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1 Overview

Many economists spend much of their lives in front of a computer, analysing data or simulating
economic models. Surprisingly few of them have ever been taught how to do this well.
Class exposure to programming languages is most often limited to mastering {Stata, Matlab,
EViews, . . . } just well enough in order to perform simple tasks like running a basic regression.
However, these skills do not scale up in a straightforward manner to handle complex projects
such as a master’s thesis, a research paper, or typical work in government or private business
settings. As a result, economists spend their time wrestling with software, instead of doing
work, but have no idea how reliable or efficient their programs are.

This course is designed to help fill in this gap. It is aimed at PhD students who expect to
write their theses in a field that requires modest to heavy use of computations. Examples
include applied microeconomics, econometrics, macroeconomics, computational economics —
any field that either involves real-world data; or that does not generally lead to models with
simple closed-form solutions.

We will introduce students to programming methods that will substantially reduce their time
spent programming while at the same time making their programs more dependable and
their results reproducible without extra effort. The course draws extensively on some simple
techniques that are the backbone of modern software development, which most economists
are simply not aware of. It shows the usefulness of these techniques for a wide variety of
economic and econometric applications by means of hands-on examples. More information
can be found on http://www.wiwi.uni-bonn.de/gaudecker/teaching.html.

2 Notes and Prerequisites (start well before the course!!!)

Note: The material is far too extensive to be covered in a block course. We will go extensively
through Version Control for sure and select other topics based on student demand.

• Install the required programs on your laptop:
http://hmgaudecker.github.io/econ-python-environment/

• In addition, make sure you have a working LaTeX environment on your machine

• Register for a Github account (https://github.com) and request free private reposito-
ries via https://education.github.com/discount_requests/new (check “Individual
Account” on the first page).

• Have a look at the Wilson et al. (2014) reference below for the general ideas behind the
course

• Examples will be loosely based on Barberis, Huang, and Thaler (2006) and Gaudecker
(2015), have a look at those for some economic motivation.
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3 Detailed course objectives

This course has two distinct but closely intertwined objectives:

1. Enhancing students’ programming efficiency.

2. Providing them with the tools to make their computations reproducible.

There is not much reason to explain the first objective to economists beyond a simple cal-
culation: Expect to spend 14 × 1.5 + 7 × 1.5 = 31.5 hours in class and about three times as
much working at home, so roughly 120 hours. Let’s assume that this course will reduce your
time spent programming by 25%. Leaving out capacity constraints during the term, taking
this course will be efficient if you expect to spend more than twelve regular working weeks
on research that is not paper-reading or pen-and-pencil-theorem-proving. This would include
about any PhD that is not pure theory.1

Personally, I find objective 2 much more important. The credibility of our profession — which
is not remarkably high these days anyhow — is undermined if erroneous results appear in
respected journals. To quote McCullough and Vinod (2003):

Replication is the cornerstone of science. Research that cannot be replicated is
not science, and cannot be trusted either as part of the profession’s accumulated
body of knowledge or as a basis for policy. Authors may think they have written
perfect code for their bug-free software package and correctly transcribed each
data point, but readers cannot safely assume that these error-prone activities
have been executed flawlessly until the authors’ efforts have been independently
verified. A researcher who does not openly allow independent verification of his
results puts those results in the same class as the results of a researcher who does
share his data and code but whose results cannot be replicated: the class of results
that cannot be verified, i.e., the class of results that cannot be trusted.

It is sad if not the substance, but controversies about the replicability of results make it
to the first page of the Wall Street Journal (2005, covering the exchange Hoxby (2000) –
Rothstein (2007a) – Hoxby (2007) – Rothstein (2007b)). There are some other well-known
cases from top journals, see for example Levitt (1997) – McCrary (2002) – Levitt (2002) or
the experiences reported in McCullough and Vinod (2003). Assuming that the incentives
for replication are much smaller in lower-ranked journals, this is probably just the tip of the
iceberg. As a consequence of such issues, many journals have implemented relatively strict
replication policies, see Figure 1.

Exchanges such as those above are a huge waste of time and resources. Why waste? Because
it is almost costless to ensure reproducibility from the beginning of a project — much is
gained by just following a handful of simple rules. They just have to be known. The earlier,
the better. From my own experience (Gaudecker, Soest, and Wengström, 2011), I can confirm
that replication policies are enforced nowadays — and that it is rather painful to ensure ex-
post that you can follow them. The number of journals implementing replication policies is
likely to grow further — if you aim at publishing in any of them, the 25% time reduction
noted above underestimates true savings by several orders of magnitude. And I did not get
started on research ethics . . .

1Similar calculation, more sophisticated: http://software-carpentry.org/2011/06/doing-the-math/
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Figure 1: Economic Journals with Mandatory Data + Code Archives

Source: McCullough (2009).

4 Target audience

This course is intended for PhD students who finished their first year. More precisely, you
should have started on your first large-scale research project (or be about to do so). Next to
your economics background, I will only assume that you have written smaller pieces of code
before, like Stata .do-files or Matlab .m-files. Knowledge of a specific programming language
is not required.

In fact, this course will use Python as an instructional language. Why? Because it is (1)
freely available for all operating systems, (2) has numerical abilities closely mirroring those of
Matlab but is (3) much more versatile and (4) easily extended with languages such as Fortran
or C, which dominate computationally intensive fields. It is not a course about Python2 —
but I will use it as an example to teach the core concepts you need. You will be able to apply
them in other languages with little transfer.

A fair share of this course is really about tool choice — I will take care in pointing out which
language is most appropriate for which problem; but it is more instructive to stick to one
language for the course.

2Although it is great for research and it is catching on even among more serious economists than

myself.
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5 Course outline

The outline below is in the correct chronological order, but that the numbering of the topics
does not coincide with lectures. Some topics will be shorter, some will be longer than 90
minutes. Also, I will often delay some advanced subtopics to points later in the course, where
they fit in more naturally. But I’ll try to keep the slides ordered by topic for easier reference.

1. Introduction

(a) Why reproducibility matters.

References: Dewald, Thursby, and Anderson (1986), King (1995), McCullough and
Vinod (2003), McCullough (2007), Baiocchi (2007), McCullough (2009), Koenker
and Zeileis (2009), Kleiber and Zeileis (2010), LeClere (2010), Merali (2010),
Barnes (2010), Yale Law School Roundtable on Data and Code Sharing (2010)
Ince, Hatton, and Graham-Cumming (2012)

(b) Core concepts.

References: Wilson et al. (2014), Wilson (2006), Kelly and Sanders (2008), Kelly,
Hook, and Sanders (2009), Segal (2008)

2. Taking low-level control of your machine: The Shell

References: Shotts (2011),

3. Math refresher

Reference: http://www.jfsowa.com/logic/math.htm

4. A very short introduction to LATEX.

References: Kopka and Daly (2004), Loong (2007), Verfaille (2008)

5. Organising your workflow and keeping a project’s history: Version control,
part I: Git on a single machine

References: Sink (2011),

6. Basic programming: Simple data types, conditionals, control flow, functions,
modules.

References: Koepke (2011) Langtangen (2009), Campbell, Gries, Montojo, and Wilson
(2009) Lutz (2007)

7. Strings, flexible data structures, file input / output

References: Langtangen (2009), Campbell, Gries, Montojo, and Wilson (2009) Lutz
(2007)

8. Collaborating with others and keeping code on different machines: Version
control, part II

References: Sink (2011),
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9. Getting your code to work: Systematic debugging.

References: Langtangen (2009), Campbell, Gries, Montojo, and Wilson (2009), Barr
(2004)

10. Scientific tools for Python.

References: Langtangen (2009), Campbell, Gries, Montojo, and Wilson (2009) Lutz
(2007)

11. Automating project workflows, sensible project layouts

References: Gaudecker (2014) Fomel and Hennenfent (2007), Nagy (2013)

12. Handling economic data

References: McKinney (2012)

13. Making sure your code works: Systematic testing.

References: Freeman and Pryce (2010), Dubois (2005) Arbuckle (2010)

14. Programming environments and programming languages.

References (environments): Doar (2005)
References (specific languages): Panko (1998/2008), McCullough (2008), Langtangen
(2008, 2009), Campbell, Gries, Montojo, and Wilson (2009)

6 Credits

You will receive credits for a programming project due four weeks after the course. Overall,
you should convince me that you have a good grasp over the main goals of this course, i.e.
that you are able to solve interesting economic problems requiring a computer in a way that
is reproducible by others. Depending on where you are in your PhD, you might want to bring
one of your own research projects into shape; or you could write a little script to automate
an annoying, tedious task.
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