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Obesity inequality and the changing shape of the bodyweight 
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Abstract 
Using data from the China Health and Nutrition Survey (CHNS), this study analyses changes 

in bodyweight (BMI and waist circumference) distributions between 1991 and 2011 among 

adults aged 20+ in China. To do so, we quantify the source and extent of temporal changes in 

bodyweight and then decompose the increase in obesity prevalence into two components: a 

rightward shift of the bodyweight distribution (mean growth) and a (re)distributional skewing. 

Our analysis reveals a clear rightward distributional shift combined with a leftward skewing. 

Although the relatively large size of this skewing in the first decade analysed reflects an 

increase in obesity inequality, this inequality growth subsides in the second decade. 

Nevertheless, over the entire 20-year period, obesity inequality increases significantly, 

especially among females, younger age groups, rural residents and individuals with low 

socioeconomic status. 
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Obesity inequality and the changing shape of the bodyweight 

distribution in China 

 

1. Introduction 

The ever-rising levels of overweight and obesity worldwide make obesity one of the most 

prominent issues in global public health (Ng et al., 2014), with over 1.9 billion adults aged 18 

and older being overweight in 2014 and a further 600 million being actually obese (WHO, 

2016). Nonetheless, recent trends in adult obesity rates vary substantially across countries, 

increasing rapidly in most developing countries like China but slowing or stabilizing in some 

developed countries such as the U.S. and UK (Lu et al., 2016). In all regions, however, being 

overweight or obese is linked with an increased prevalence of chronic disease, including 

cardiovascular disease, stroke, type 2 diabetes and a subset of cancers (Hill and Peters, 1998), 

as well as particular social and mental health risks (OECD, 2012). 

China presents a uniquely interesting case of weight change because of its rapid transition from 

historical undernutrition to a sharp increase in overweight and obesity (Xi et al., 2012; Zhai et 

al., 2009). China has also witnessed a major shift in diet – most notably, an increased intake of 

edible oils, fried foods, animal-sourced foods and snacks – accompanied by a sharp decline in 

occupational and domestic physical activity (PA), which combination tripled the prevalence of 

adulthood overweight from 11.7% in 1991 to 29.2% in 2009 (Gordon-Larsen et al., 2014). 

China’s rates of obesity-related non-communicable diseases (NCDs) have also increased 

dramatically and have become the major risk factors for morbidity, disability and mortality 

(Popkin, 2008). The country’s prevalence of diabetes, for instance, nearly quadrupled between 

1994 and 2008 from 2.5% (Pan et al., 1997) to 9.7% (Yang et al., 2010). As a result, China 

spends 24 billion yuan annually, 2.46% of its annual national health care expenditure, on 

overweight, obesity and their complications (Qin and Pan, 2016). This expenditure clearly 

indicates the magnitude of the challenge posed by this rapidly increasing obesity to China’s 

health care system (Zhao et al., 2008).  

Statistically, the rise in obesity prevalence (or mean bodyweight) in China can be attributed to 

two factors: a rightward shift of the bodyweight distribution, indicating that the entire 

population is growing heavier, or an increase in distributional left-skewness, reflecting more 

rapid weight gain in one population subset (notably the more obese) and thus rising obesity 

inequality – or a combination of both. Understanding which is the case is important because 
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the former would call for population-wide policies, whereas the latter would signal a need for 

policies targeted at groups particularly affected by obesity. Obesity inequality may also play 

an important role when assessing obesity’s persistence: On the one hand, general increases in 

a population’s bodyweight (i.e., a rightward distributional shift) may alter norms and 

perceptions of ideal bodyweight in the entire population, which can cement higher obesity rates. 

On the other hand, an increase in distributional skewness, by mainly affecting only a specific 

portion of the population, may not have such lasting effects. In fact, there is empirical evidence 

that perceptions of ideal bodyweight are changing. In the U.S., for example, the percentage of 

overweight (but not obese) individuals who describe their weight as “about right” (rather than 

“overweight”) has increased significantly, from 14% to 21% among women and from 41% to 

46% among men (Burke and Heiland, 2018). Blanchflower et al. (2009) also show that, for a 

given level of overweight, the wider an individual’s deviation from the average weight within 

a region, the stronger his or her feelings of being overweight. Given the large body of evidence 

on obesity’s negative psychological effects (e.g. Katsaiti, 2012), which increase with the 

deviation from the overall population (Wadsworth and Pendergast, 2014), a rise in obesity 

inequality could accentuate obesity-related stigma and discrimination. 

Yet despite the importance of knowing how a country’s bodyweight distribution has changed 

over time, little research on this topic exists. In fact, we are aware of only four such studies, 

the first being Contoyannis and Wildman's (2007) analysis of Canadian National Population 

Health Survey (NPHS) and Health Survey of England (HSE) data, which demonstrates a 

polarization over time in both nations towards the right-end of the BMI distribution, with the 

English polarizing towards the upper tails at a faster rate than the Canadians. Subsequent work 

by Sahn (2009), which draws on Demographic Health Survey data from 30 developing and 

transitional countries, not only reveals a sharp rise in overweight among women in Latin 

America and the Middle East but shows that in most countries, female BMI distributions are 

becoming markedly more unequal. On the other hand, Madden (2011), using 2002–2007 data 

from the Survey of Lifestyle, Attitudes and Nutrition in Ireland, identifies a marginal decrease 

in obesity over this period, which he also attributes primarily to a change in the shape of the 

BMI distribution (as opposed to a change in average level). Lastly, Pak et al. (2016) employ 

four waves of National Health and Nutritional Examination Survey (NHANES) data to 

investigate the inter-temporal changes in BMI distribution among U.S. adults between 1971 

and 2014. In addition to showing that the early phase of the obesity epidemic is mostly 

attributable to increasing skewness while recent increases reflect a population-wide increase, 
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these authors demonstrate that within-group inequality accounts for the majority of the increase 

in obesity inequality, which is worsening over time.  

Our study thus aims to provide the first analysis of long-term distributional changes in 

bodyweight among Chinese adults aged 20+ by examining changes in both the BMI and waist-

circumference (WC) distributions over the 1991–2011 period. This approach is important 

because in China central obesity is much more prominent than general obesity whose negative 

health effects are less severe (Xi et al., 2012). In addition to applying Kakwani's (1997) 

technique to decompose total change in obesity prevalence into a mean-growth and a 

redistribution component, we also employ conventional inequality measures (Gini and 

generalized entropy) to provide a univariate assessment of obesity inequality. Lastly, we 

decompose obesity inequality into within-group and between-group to throw light on whether 

disproportionate obesity increase is a population-wide phenomenon or the result of changing 

demographic composition. 

 

2. Data and Methods 

2.1. Data and study population 

The data are taken from 8 waves of the China Health and Nutrition Survey (CHNS) – 1991, 

1993, 1997, 2000, 2004, 2006, 2009, and 2011 – covering nine provinces (Liaoning, 

Heilongjiang, Jiangsu, Shandong, Henan, Hubei, Hunan, Guangxi and Guizhou) with different 

social, economic and health characteristics (Zhang et al., 2014). The survey’s multi-stage 

random cluster sampling method (based on different income levels and weighted sampling) 

entails the following steps: After randomly selecting four counties and two cities within each 

province, the CHNS randomly identifies villages and towns in each county and urban and 

suburban regions in each city. It then selects 20 households from each of these communities. 

The data thus capture a broad spectrum of the spatio-temporal dynamics of the Chinese 

populations’ social, economic and health situations (Zhang et al., 2014).  

Our final analytic sample is restricted to adults aged 20 and older for whom detailed 

demographic, socioeconomic and anthropometric information is available. We exclude from 

the sample pregnant females; the 1989 wave, which is limited to adults aged 20–45; and the 

most recent 2015 wave, which provides no anthropometric information. These exclusions leave 

8 rounds of CHNS data from 1991 to 2011 and a final sample size of 72,732 BMI observations. 

When reporting our results, we focus primarily on two periods: 1991-2000 (the early period) 
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and 2000-2011 (the late period). In addition, because waist circumference data are only 

available from 1993 onwards, for this variable, our early period runs from 1993 to 2000 and 

our sample size is only 63,493. 

    

2.2 Obesity variables 

In the CHNS, weight is measured to the nearest 0.1 kg on a calibrated beam scale with the 

subject wearing only lightweight clothing, while height is measured to the nearest 0.1 cm using 

a portable stadiometer with the subject barefoot (Xi et al., 2012). We adopt BMI (in kg/m2) as 

one proxy of body weight and define general obesity according to the Working Group on 

Obesity in China (WGOC) criterion; that is, BMI ≥ 28 kg/m2 (Zhou and the Cooperative Meta-

Analysis Group of the WGOC, 2002). Waist circumference (WC) is measured (in cm) at the 

midpoint between the bottom of the ribs and the top of the pelvis. Abdominal obesity among 

males is defined as WC ≥ 85cm and among females as WC ≥ 80cm (Zhou and the Cooperative 

Meta-Analysis Group of the WGOC, 2002). Our use of CHNS’s clinical measures of 

respondent weight, height and WC is advantageous because it eliminates the reporting bias 

inherent in self-reported weight and height (Shields et al., 2011), which tends to result in 

underestimation of BMI (Burkhauser and Cawley, 2008). 

2.3 Demographic and socioeconomic variables 

To capture subpopulation heterogeneity in obesity inequality, we introduce several 

demographic and socioeconomic characteristics, including gender (1 = male, 0 = female), age 

group (20–39 years, 40–59 years and 60+ years), educational level (0 = low: illiterate/primary 

school, 1 = medium: middle school/high school and 2 = high: technical or vocational degree 

/university/master’s degree or higher), household income level (recoded into terciles: 0 = low, 

1 = medium and 2 = high) and region (1 = urban, 0 = rural).  

2.4 Methods 

Stochastic dominance test. In addition to being common in economic studies of inequality and 

poverty (Davidson and Duclos, 2003, 2013), the stochastic dominance (SD) test, a non-

parametric distributional comparison among continuous variables (Cowell and Flachaire, 

2015), is widely used in obesity studies (Madden, 2011; Pak et al., 2016; Sahn, 2009). Applying 

this intuitively appealing technique to our BMI and WC measures is particularly appropriate 

given that SD focuses primarily on comparisons over the entire bodyweight distribution and is 
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thus independent of the selection of an obesity threshold (Pak et al., 2016). More specifically, 

after defining first-order dominance as  

𝐷𝐷𝑡𝑡1 (𝑥𝑥) = � 𝑑𝑑𝐹𝐹𝑡𝑡(𝑦𝑦)
𝑥𝑥

0
                         (1) 

we are able to express second-order and higher-order dominance as 

𝐷𝐷𝑡𝑡𝑠𝑠 (𝑥𝑥) = � 𝐷𝐷𝑡𝑡𝑠𝑠−1(𝑦𝑦)𝑑𝑑𝑑𝑑,   𝑠𝑠 ≥ 2
𝑥𝑥

0
   (2) 

We then define 𝐹𝐹𝑡𝑡𝑛𝑛(𝑥𝑥) and  𝐹𝐹𝑡𝑡𝑛𝑛−1(𝑥𝑥) as two cumulative distribution functions (CDF) of our 

bodyweight measures (BMI and WC), with 𝑡𝑡𝑛𝑛 and 𝑡𝑡𝑛𝑛−1 denoting two time points of n and n-1, 

respectively. The distribution at time 𝑡𝑡𝑛𝑛 stochastically dominates the distribution at time  𝑡𝑡𝑛𝑛−1 

at order s if the following pair of conditions hold:  

𝐷𝐷𝑡𝑡𝑛𝑛
𝑠𝑠 (𝑥𝑥) ≤ 𝐷𝐷𝑡𝑡𝑛𝑛−1

𝑠𝑠 (𝑥𝑥)                            (3) 

𝐷𝐷𝑡𝑡𝑛𝑛
𝑠𝑠 (𝑥𝑥) < 𝐷𝐷𝑡𝑡𝑛𝑛−1

𝑠𝑠 (𝑥𝑥)                            (4) 

where equation 3 indicates that the distribution at time 𝑡𝑡𝑛𝑛  stochastically dominates the 

distribution at time  𝑡𝑡𝑛𝑛−1 at order s, and equation 4 indicates the case of strict dominance. In 

addition to using simple t-statistics to test the null hypothesis (H0: 𝐷𝐷𝑡𝑡𝑛𝑛−1
𝑠𝑠 (𝑥𝑥) − 𝐷𝐷𝑡𝑡𝑛𝑛

𝑠𝑠 (𝑥𝑥) = 0) for 

a series of test points along the distribution, we test the significance over the whole bodyweight 

domain to identify which part of the bodyweight distribution varies most (cf. Pak et al. 2016). 

Order s dominates when the null hypothesis is rejected for at least one test point at the 1% 

significance level without any reversal in the signs of difference (Madden, 2011). Although the 

choice of number of test points is quite arbitrary, the more test points used, the more likely the 

null hypothesis will be rejected, so most studies choose 10 to 30 points (Sahn, 2009; Pak et al. 

2016). We alternatively employ 10, 30, 40 and even 80 test points, but our results do not change. 

Non-dominance exists when the differences are not significant or when the two cumulative 

distributions cross. Given that the interpretation of higher-order SD is less intuitive (Sahn, 2009) 

and our focus is on explaining variations in bodyweight distribution, we follow the convention 

of only analysing the first-order SD test. 

Growth-inequality decomposition. Because SD tests can only make comparisons between 

bodyweight distributions, they say nothing about the underlying mechanisms of upwards or 

downwards shifts in the bodyweight distribution. We therefore additionally employ Kakwani 

(1997) decomposition to disentangle the total change in obesity prevalence into a mean-growth 
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and a redistribution component. By doing so, we hope to assess how much of the obesity 

increase is driven by a horizontal shift in bodyweight distribution (i.e., an increase in mean 

BMI or WC) and how much by a change in distribution pattern (e.g., an increased skewness 

towards the upper tail of the BMI or WC distribution) (Pak et al., 2016). Although prior studies 

employ a variety of methods to decompose poverty into growth and redistribution components 

(Datt and Ravallion, 1992; Jain and Tendulkar, 1990), these methods all produce an often 

difficult-to-interpret residual effect, which prevents sole attribution of changes in the measure 

of interest (in our case, bodyweight) to the growth and inequality effects. Kakwani (1997) 

describes this latter as the violation of an intuitively natural axiom. A further drawback of these 

approaches is that the growth and redistribution components differ dependent on choice of 

reference point, which itself is quite arbitrary (Datt and Ravallion, 1992). Kakwani (1997) thus 

suggests avoiding such arbitrary choice by using all periods as reference points, a procedure 

successfully employed in income and health inequality analyses (Christiaensen, 2002; 

Dhongde, 2007; Sahn and Younger, 2005) that also eliminates the residual term (Sahn, 2009). 

In our case, the obesity rate at time t can be expressed as follows:  

 𝑂𝑂𝑂𝑂𝑡𝑡 = 𝑂𝑂𝑂𝑂(𝑇𝑇|𝑚𝑚𝑡𝑡; 𝑐𝑐𝑡𝑡)                      (5) 

where 𝑂𝑂𝑂𝑂𝑡𝑡 represents obesity prevalence at time t, and  𝑇𝑇 is the obesity threshold (28 for BMI-

based obesity, 85cm for male WC-based obesity and 80cm for female WC-based obesity). m 

is the average BMI, and c is the Lorenz curve denoting the CDF of the BMI probability 

distribution.  

Changes in obesity rates between 𝑡𝑡𝑛𝑛 and 𝑡𝑡𝑛𝑛−1 can be decomposed as 

𝑂𝑂𝑂𝑂𝑡𝑡𝑛𝑛 − 𝑂𝑂𝑂𝑂𝑡𝑡𝑛𝑛−1 = 𝐺𝐺(𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛) + 𝑅𝑅(𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛) + 𝜀𝜀(𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛)  (6) 

where 𝐺𝐺(∙), 𝑅𝑅(∙), and 𝜀𝜀(∙)  represents the growth, redistribution and residual parts, respectively. 

More specifically, we define the growth and redistribution components as follows:  

𝐺𝐺 = 𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛; 𝑐𝑐𝑡𝑡𝑛𝑛−1� −  𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛−1; 𝑐𝑐𝑡𝑡𝑛𝑛−1�                       (7) 

𝑅𝑅 = 𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛−1; 𝑐𝑐𝑡𝑡𝑛𝑛� −  𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛−1; 𝑐𝑐𝑡𝑡𝑛𝑛−1�                     (8) 

where 𝐺𝐺  denotes the change in obesity prevalence attributable to a horizontal shift in the 

bodyweight distribution while the relative position (measured by Lorenz curve) is kept constant. 

𝑅𝑅 indicates the observed change in the relative position while the average bodyweight remains 

constant. Then, following Kakwani (1997), total change in obesity prevalence can be exactly 

decomposed into the average growth and redistribution effects as follows:  
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𝑂𝑂𝑂𝑂𝑡𝑡𝑛𝑛 − 𝑂𝑂𝑂𝑂𝑡𝑡𝑛𝑛−1 = 𝐺𝐺�(𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛) + 𝑅𝑅�(𝑡𝑡𝑛𝑛−1, 𝑡𝑡𝑛𝑛) (9)   

where 𝐺𝐺� and 𝑅𝑅�  respectively denote the growth and redistribution components of changes in 

obesity prevalence as specified by 

𝐺𝐺� =
1
2

[𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛; 𝑐𝑐𝑡𝑡𝑛𝑛−1� −  𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛−1; 𝑐𝑐𝑡𝑡𝑛𝑛−1�] +
1
2

[𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛; 𝑐𝑐𝑡𝑡𝑛𝑛� −  𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛−1; 𝑐𝑐𝑡𝑡𝑛𝑛�]  (10) 

𝑅𝑅� =
1
2

[𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛−1; 𝑐𝑐𝑡𝑡𝑛𝑛� −  𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛−1; 𝑐𝑐𝑡𝑡𝑛𝑛−1�] +
1
2

[𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛; 𝑐𝑐𝑡𝑡𝑛𝑛� −  𝑂𝑂𝑂𝑂�𝑇𝑇�𝑚𝑚𝑡𝑡𝑛𝑛; 𝑐𝑐𝑡𝑡𝑛𝑛−1�]  (11) 

In equations 10 and 11, the Kakwani decomposition for two-period comparisons takes an 

equally weighted average of two decompositions, one in the reference year and the other in a 

later year. In the case of three periods, we adopt multilateral comparisons to decompose the 

obesity prevalence into the growth (𝐺𝐺�𝑖𝑖𝑖𝑖) and redistribution (𝑅𝑅�𝑖𝑖𝑖𝑖) effects (Kakwani, 1997): 

𝐺𝐺�𝑖𝑖𝑖𝑖 =
1
𝑛𝑛
��𝐺𝐺�𝑖𝑖𝑖𝑖 + 𝐺𝐺�𝑘𝑘𝑘𝑘�
𝑛𝑛

𝑘𝑘=1

       (12) 

𝑅𝑅�𝑖𝑖𝑖𝑖 =
1
𝑛𝑛
�(𝑅𝑅�𝑖𝑖𝑖𝑖 + 𝑅𝑅�𝑘𝑘𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

        (13) 

where 𝑖𝑖  and 𝑗𝑗  range from 1 to n (in our case, n=3), and 𝐺𝐺�𝑖𝑖𝑖𝑖  and 𝑅𝑅�𝑖𝑖𝑖𝑖  follow the same 

specifications as in equations (10) and (11). 

Obesity inequality measures (Gini and generalized entropy). Although SD tests provide partial 

rankings of bodyweight distributions, they do not identify cardinal distributional differences. 

At the same time, the Kakwani technique used to decompose the total change in obesity rates 

is heavily dependent on the selection of an obesity threshold (Pak et al., 2016). Therefore, as a 

complementary approach, we also introduce Gini and generalized entropy (GE) measures to 

track the cardinal changes in obesity inequality. The Gini coefficient, a measure of statistical 

dispersion in a particular distribution, is a popular and widely used index measuring inequality 

(Yitzhaki, 1983). In essence, the Gini index,  which ranges from 0 (complete equality) to 1 

(complete inequality), is twice the area between the Lorenz curve and the 45-degree line 

(Cowell and Flachaire, 2015). Following Pak et al. (2016), we express this measure as 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 =
2

𝑚𝑚𝑡𝑡𝑁𝑁𝑡𝑡2
� 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 −

𝑁𝑁𝑡𝑡 + 1
𝑁𝑁𝑡𝑡

𝑁𝑁𝑡𝑡

𝑖𝑖=1
             (14) 
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where N is the sample size, m is the average BMI, 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 is the individual BMI value at time t, 

and 𝑟𝑟𝑖𝑖𝑖𝑖  denotes the ranking of ith BMI at time t in ascending order (with an equivalent  

expression for WC). 

Because the Gini index is sensitive to changes around the distributional mode, we also adopt 

GE measures that are flexible enough to allow greater sensitivity away from the distributional 

middle (Shorrocks, 1984; Yang, 1999). We express the GE index as  

𝐺𝐺𝐺𝐺𝑡𝑡(𝜔𝜔)
1

𝑤𝑤(𝑤𝑤 − 1) [
1
𝑁𝑁𝑡𝑡
� (

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖
𝑚𝑚𝑡𝑡

)𝑤𝑤 − 1]       (15)
𝑁𝑁𝑡𝑡

𝑖𝑖=1
 

where 𝜔𝜔 is a scaling parameter representing the weight given to distances between individual 

BMI at different parts of the BMI distribution (with the same equation used for WC). The mean 

logarithmic deviation (MLD) is the limiting case when 𝜔𝜔 = 0  (GE(0)), while the Theil index 

is the limiting case when 𝜔𝜔 = 1 (GE(1)) (Cowell and Flachaire, 2015), which assures equal 

treatment of the differences between individual BMI levels at different parts of the BMI 

distribution. GE(2) is half the square of the coefficient of variation (Jenkins and Kerm, 1999). 

Because these GE(𝜔𝜔) indices vary in their sensitivities to differences in different distributional 

areas, the more positive (negative) the 𝜔𝜔, the more sensitive GE(𝜔𝜔) to BMI differences at the 

top (bottom) of the distribution (Jenkins and Kerm, 1999). As robustness checks, we also set 

𝜔𝜔 to 0 and 2, thereby enabling comparisons with Pak et al.'s (2016) outcomes for the U.S. 

population. 

The use of SD tests and the Kakwani decomposition alone, however, does not allow us to 

identify which changes in obesity inequality are driven by changing subpopulation 

characteristics and which by a population-wide shift in bodyweight distribution. Rather, for 

this task, we introduce a GE-based decomposition by subgroup that splits the GE index into 

within-group and between-group inequality (Shorrocks, 1984):  

𝐺𝐺𝐺𝐺𝑡𝑡(𝜔𝜔) = 𝐺𝐺𝐺𝐺𝑡𝑡(𝜔𝜔)𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐺𝐺𝐺𝐺𝑡𝑡(𝜔𝜔)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (16) 

𝐺𝐺𝐺𝐺𝑡𝑡(𝜔𝜔)𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = �
𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡,𝑗𝑗

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡
𝐺𝐺𝐺𝐺𝑡𝑡,𝑗𝑗

𝑗𝑗
                              (17) 

𝐺𝐺𝐺𝐺𝑡𝑡(𝜔𝜔)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑔𝑔𝑔𝑔𝑔𝑔𝑢𝑢𝑝𝑝 = �
𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡,𝑗𝑗

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡
ln (

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡,𝑗𝑗 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡⁄
𝑁𝑁𝑡𝑡,𝑗𝑗 𝑁𝑁𝑡𝑡⁄ )

𝑗𝑗
   (18) 

where 𝐺𝐺𝐺𝐺𝑡𝑡,𝑗𝑗 and 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡,𝑗𝑗 represent the GE index and BMI at subgroup j and time t, respectively 

(with a similar approach applied for WC). In equation 16, the first term denotes the weighted 
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sum of inequality within groups, while the second term designates the component driven by 

the heterogeneity in inequality between groups. We calculate this latter by assuming that 

everyone within a group has that group’s mean bodyweight. From this expression, we can thus 

obtain the proportion of total bodyweight inequality attributable to inequality within groups 

and the proportion attributable to inequality between groups. If the relative contribution of total 

bodyweight inequality attributable to between-group inequality is negligible and the change of 

within-group inequality across time is comparable over groups, then the increasing bodyweight 

inequality is probably not driven by changes in the population’s demographic composition but 

by changes in the population at large (Pak et al., 2016). To detect possible heterogeneities in 

population subgroups, we also perform a decomposition of the Theil index by age, gender, 

education, household income and region, as well as combinations of these categories. 

 

3. Results 

As shown by the Fig.1 illustration of the BMI kernel density and CDF curve between 1991 and 

2011, not only did the BMI distribution generally shift to the right but the prevalence of obesity 

prevalence (BMI ≥ 28 kg/m2) increased significantly from 3.2% in 1991 to 11.6% in 2011. The 

same pattern is evident for WC (Fig. 2), with the prevalence of central obesity increasing from 

24.4% in 1993 to 56.4% in 2011. Taken together, these observations confirm that our analysis 

covers the start of the obesity epidemic. Nonetheless, it is also worth noting that the obesity 

prevalence in China is still much lower than that in the U.S. four decades ago and that as yet, 

extreme obesity (i.e., BMI ≥ 40 kg/m2) is still not a major problem in China.  

 

Fig.1 BMI distribution over time, 1991–2011 
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Fig.2 WC distribution over time, 1993–2011 

 

Because exact assessment of CDF differences is difficult, in Figs. 3 and 4, we graph the 

differences for different periods, revealing a clear rightward shift in the BMI distribution. The 

mostly negative CDF differences responsible for this shift reflect an increase in bodyweight, 

with the largest negative values encountered at a BMI of around 23 and a WC of approximately 

79. The shift thus indicates a significant reduction in the proportion of individuals with normal 

bodyweight, one that is most evident in the differences between 1991 and 2011. Over these 

two decades, the probability of having a BMI (WC) under 23 (80) dropped by close to (more 

than) 30 percentage points.  
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Fig. 3 Differences in the BMI CDF curve: 2000–1991, 2011–2000 and 2011–1991  

 

 

Fig. 4 Differences in the WC CDF curve: 2000–1993, 2011–2000 and 2011–1993  
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The results in Table 1 also reveal a first-order stochastic dominance for all wave-to-wave 

comparisons, as well as for the periods 1991(1993)–2000, 2000–2011 and 1991(1993)–2011. 

Because the first-order SD tests are in essence based on comparisons of the CDF curves in two 

distributions, this first-order stochastic dominance is reflected in the predominantly negative 

values in Figs. 3 and 4. 

 

Table 1 First-order stochastic dominance test for BMI and WC  
Survey Year Dominance Test BMI Dominance Test WC 

1991-1993 1  

1993-1997 1 1 

1997-2000 1 1 

2000-2004 1 1 

2004-2006 1 1 

2006-2009 1 1 

2009-2011 1 1 

1991 (1993)-2000† 1 1 

2000-2011 1 1 

1991 (1993)-2011† 1 1 

Note: 1 designates first-order stochastic dominance.  
†WC data only available for 1993–2011. 

 

In addition to the stochastic dominance test, deriving the growth incidence curve can provide 

insights into the magnitude of the bodyweight increase and describe which part of the 

bodyweight distribution contributes more to the overall growth between two periods. The 

growth incidence curves in Fig. 5 therefore show the percentage change at each percentile, with 

the horizontal line representing the mean growth rate. Whereas the early period is marked by 

significant distributional skewing with BMI growth not only higher at the upper end but above 

average in most of the upper half; in the later period, the growth incidence curve becomes 

flatter with very few significant growth rate differences across the distribution. Only below the 

20th percentile do we observe significantly lower growth rates than the average. Fig. 5 thus 

reveals a growing inequality (i.e., an increase in distributional left-skewness) at the end of the 

last century followed by a more equal rise in BMI at the beginning of this century. In fact, there 

is clear evidence of ongoing skewing over the entire 20 years caused by above average BMI 
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growth in the upper parts of the distribution. The pattern for the WC growth incidence curves 

is similar to those for BMI (Fig. 6). Also evident over the entire period are below-average 

growth rates below the 20th percentile. This pattern of rising inequality in the early stages of 

the obesity epidemic followed by more equal growth rates in the entire population to some 

extent mirrors developments in the U.S., in which significant distributional left-skewing 

between 1976–1994 (i.e., in the early stages of the obesity epidemic) is followed in the next 

decade by relatively equal growth rates across the entire distribution (Pak et al., 2016).  

 

 

Fig. 5 BMI growth incidence curves 
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Fig. 6 WC growth incidence curves 

 

Using Kakwani (1997) decomposition to partition the total changes in obesity prevalence into 

a growth and redistribution component also allows us to quantify how much of the obesity 

increase is due to rightward distributional shift and how much to distributional skewing. As 

Table 2 shows, in the early period, general (BMI-based) obesity rose by 3.78 percentage points, 

84% of it attributable to the growth component and about 16% to distributional skewing. Hence, 

although the rising inequality in the early period (as shown in Fig. 5) significantly affected the 

rise in obesity rates, the general mean growth in BMI was more important. The flattening of 

the growth incidence curves in Fig. 5 is also mirrored by the redistribution component’s drop 

in importance in the later period to a mere 8%. Over the entire two decades, about 11% of the 

8.37% point increase in obesity is attributable to distributional skewing; that is, to the rise in 

obesity inequality.  
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Table 2 Decomposition of increase in general obesity prevalence into mean-growth and redistribution 
components 

Survey year Difference Growth component (G) Redistribution component (R) G/(G+R) (%) R/(G+R) (%) 

1991-2000 0.0378 0.0317 0.0061 83.86 16.14 

  (0.0011) (0.0017)   

2000-2011 0.0459 0.0423 0.0036 92.16 7.84 

  (0.0014) (0.0021)   

1991-2011 0.0837 0.0741 0.0096 88.53 11.47 

  (0.0025) (0.0037)   

Note: Standard errors are in parentheses. 
 

 

Because assessments of central obesity apply different obesity thresholds for men and women, 

Table 3 reports the Kakwani (1997) decomposition for both genders. In the early period, the 

prevalence of central obesity among men rose by 16% points, 17% of it due to redistribution. 

In the later period, the prevalence increased by another 20% points, while the redistributive 

components declined to 6%. Over the entire study period (1993–2011), central obesity 

increased by 37% points among men, about 11% of it attributable to redistribution, whereas 

the rise among women, at 28% points, was lower, with about 10% of it due to redistribution.   

 

Table 3 Decomposition of increase in central obesity prevalence into mean-growth and redistribution 
components 

Gender Survey year Difference Growth component (G) Redistribution component (R) G/(G+R) (%) R/(G+R) (%) 

Male 

1993-2000 0.1644 0.1367 0.0277 83.15 16.85 

  (0.0038) (0.0043)   

2000-2011 0.2021 0.1890 0.0131 93.52 6.48 

  (0.0043) (0.0048)   

1993-2011 0.3665 0.3257 0.0408 88.87 11.13 

  (0.0081) (0.0090)   

Female 

1993-2000 0.1226 0.1147 0.0079 93.56 6.44 

  (0.0036) (0.0053)   

2000-2011 0.1554 0.1370 0.0184 88.16 11.84 

  (0.0040) (0.0043)   

1993-2011 0.2781 0.2517 0.0264 90.51 9.49 

  (0.0077) (0.0097)   

Note: Standard errors are in parentheses. 
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Because Kakwani decomposition has the disadvantage of being highly dependent on the 

obesity cut-off value, however, it offers little in the way of a differentiated look at the entire 

BMI distribution. We overcome this weakness by using a univariate concentration index that 

tracks the cardinal growth of obesity inequality. According to Table 4, both the Gini and GE 

indices have risen in the two decades under analysis, indicating that general obesity inequality 

has increased. More specifically, the Gini value rose from 0.0724 in 1991 to 0.0791 in 2000 to 

0.0823 in 2011, about a 14% increase across the entire two decades. Over the same time period, 

the GE index increased only moderately, while the magnitudes of the two GE indices – GE(0) 

and GE(2) – remained quite comparable. These observations imply that our finding of 

increasing obesity inequality is very robust irrespective of the relative importance attributed to 

the lower or upper tails of the distribution. The results for inequality in central obesity are quite 

similar, with the Gini index increasing from 0.0654 to 0.0708 between 1993 and 2011.  

 

Table 4 Inter-temporal trends in obesity inequality 

Note: CI denotes 95% confidence intervals; GE refers to generalized entropy. *** indicates 1% significance in the t-test for 
differences between the inequality indexes for two different sampling periods. 
 

 

The rise in inequality is also evident in Figs. 7 and 8, which plot the Gini coefficient for all 

waves based on different socioeconomic and demographic characteristics. Both males and 

females have experienced a sharp growth in obesity inequality, although that among females is 

Survey year Gini index 95% CI 
Difference 

between t and t-1 
% change 

between  t and 
t-1 

Sensitivity analysis 

GE(0) GE(2) 

BMI       

1991 0.0724 0.0712-0.0736   0.0083 0.0087 

2000 0.0791 0.0779-0.0802 0.0067*** 9.2541 0.0098 0.0101 

2011 0.0823 0.0812-0.0833 0.0032*** 4.0455 0.0106 0.0108 

1991-2011    0.0099*** 13.6740   

       

WC       

1993 0.0654 0.0643-0.0665   0.0067 0.0069 

2000 0.0695 0.0686-0.0705 0.0041*** 6.2691 0.0075 0.0077 

2011 0.0708 0.0699-0.0717 0.0013*** 1.8705 0.0079 0.0079 

1993-2011    0.0054*** 8.2569   
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uniformly higher than that among males. On the other hand, despite a significant rise in obesity 

inequality among younger adults (aged 20–39), the change among older adults (aged 40–59 

and 60+) has remained stable. One striking development is the significant rise in obesity 

inequality in rural areas, which has now surpassed that in urban areas. With regards to 

education, we observe that unequal growth is particularly associated with lower educational 

levels (illiterate and primary school), although this growth is more pronounced for BMI than 

WC. It should also be noted that if bodyweight levels differ significantly between genders, the 

Gini coefficient is dependent on the gender balance within an educational or income category. 

As this unequal balance is particularly true for WC, we also report gender-specific figures for 

education and income. In terms of income, obesity inequality has risen in all income categories 

but is highest among lower income individuals.  

Overall, therefore, obesity inequality appears to be on the rise in most socioeconomic and 

demographic groups but is particularly high among women, individuals with lower 

socioeconomic status, and those living in rural areas. According to the growth incidence curves 

for these different demographic and socioeconomic groups (Appendix Figs. A1-A10), this rise 

in inequality is clearly being driven by distributional left-skewing, especially for the younger 

age group (20–39), rural residents and individuals with low and medium education and income.  
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Fig. 7 Trend in general obesity inequality (Gini index) by gender, age, region, education and income, 
1991–2011 
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Fig. 8 Trend in central obesity inequality (Gini index) by gender, age, region, education and income, 

1993–2011 

 

Although the development of general obesity inequality is somewhat similar to that of central 

obesity inequality, both inequality and growth rates are larger in the former than in the latter 

(see Figs. 7 and 8, respectively). Hence, to throw more light on the drivers of general obesity 

inequality, Table 5 decomposes it into within-group and between-group components. Because 

Table 4 indicates no significant discrepancy between GE(0) and GE(2), we adopt the Theil 

index (GE(1)) to decompose obesity inequality by gender, age, education, household income, 

and region (urban vs. rural), as well as combinations of these characteristics. After adjusting 

for gender, age, region, education and income, general obesity inequality is mostly attributable 

to within-group inequality, whose degree – at between 91.1% and 94.0% – remains reasonably 

stable during the period studied. Relative to within-group inequality, the contribution of 

between-group inequality to total inequality is small, accounting for 6.0-9.0% of total obesity 
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inequality once gender, age, education, household income and region are controlled for. Of 

these latter characteristics, region and income account for most of the between-group inequality 

(0.3%-3.0% and 0.4%-2.7%, respectively). Overall, relative to between-group inequality, the 

dominance of within-group inequality to total obesity inequality over time suggests that this 

disproportionate shift in the BMI distribution is not mainly due to a changing demographic and 

socioeconomic composition of the population, but rather to a population-wide pattern. This 

conclusion also applies to central obesity inequality (Table 6), although the contribution of 

between-group inequality to total inequality is slightly higher, ranging from 11.75% to 13.73%. 

 

Table 5 Within-group and between-group general obesity inequality, GE (1)  
Survey 

year GE(1)  Gender Age Region Income Education 
Gender/age/ 

region/income/ 
education 

1991 0.0084 Within 0.9948 0.9842 0.9761 0.9733 0.9957 0.9106 

  Between 0.0052 0.0158 0.0239 0.0267 0.0043 0.0894 

1993 0.0082 Within 0.9958 0.9822 0.9817 0.9890 0.9983 0.9270 

  Between 0.0042 0.0178 0.0183 0.0110 0.0017 0.0730 

1997 0.0093 Within 0.9978 0.9879 0.9706 0.9826 0.9975 0.9144 

  Between 0.0022 0.0121 0.0294 0.0174 0.0025 0.0856 

2000 0.0097 Within 0.9987 0.9821 0.9851 0.9817 0.9994 0.9171 

  Between 0.0013 0.0179 0.0149 0.0183 0.0006 0.0829 

2004 0.0103 Within 0.9993 0.9813 0.9899 0.9823 0.9996 0.9184 

  Between 0.0007 0.0187 0.0101 0.0177 0.0004 0.0816 

2006 0.0101 Within 0.9999 0.9846 0.9932 0.9894 0.9994 0.9222 

  Between 0.0001 0.0154 0.0068 0.0106 0.0006 0.0778 

2009 0.0107 Within 0.999993 0.9771 0.9960 0.9904 0.9997 0.9272 

  Between 0.000007 0.0229 0.0040 0.0096 0.0003 0.0728 

2011 0.0107 Within 0.9997 0.9825 0.9970 0.9962 0.9982 0.9403 

  Between 0.0003 0.0175 0.0030 0.0038 0.0018 0.0597 

Note: Age groups = 20–39, 40–59, 60 and over; gender = male, female; region = urban, rural; income = low, middle and high; 
education = low (illiterate/primary school), medium (middle school/ high school) and high (technical or vocational degree 
/university/master’s degree or higher).  
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Table 6 Within-group and between-group central obesity inequality, GE (1)  
Survey 

year GE(1)  Gender Age Region Income Education 
Gender/age/ 

region/income/ 
education 

1993 0.0068 Within 0.9922 0.9413 0.9740 0.9896 0.9909 0.8734 

  Between 0.0078 0.0587 0.0260 0.0104 0.0091 0.1266 

1997 0.0072 Within 0.9787 0.9579 0.9669 0.9884 0.9959 0.8685 

  Between 0.0213 0.0421 0.0331 0.0116 0.0041 0.1315 

2000 0.0075 Within 0.9749 0.9571 0.9794 0.9858 0.9984 0.8627 

  Between 0.0251 0.0429 0.0206 0.0142 0.0016 0.1373 

2004 0.0074 Within 0.9724 0.9593 0.9916 0.9848 0.9997 0.8636 

  Between 0.0276 0.0408 0.0084 0.0152 0.0003 0.1364 

2006 0.0072 Within 0.9716 0.9652 0.9921 0.9895 0.9999 0.8753 

  Between 0.0284 0.0348 0.0079 0.0105 0.0001 0.1247 

2009 0.0077 Within 0.9762 0.9581 0.9945 0.9888 0.9989 0.8809 

  Between 0.0238 0.0419 0.0055 0.0111 0.0011 0.1191 

2011 0.0079 Within 0.9614 0.9702 0.9954 0.9970 0.9993 0.8825 

  Between 0.0387 0.0299 0.0046 0.0030 0.0007 0.1175 

Note: Age groups = 20–39, 40–59, 60 and over; gender = male, female; region = urban, rural; income = low, middle and high; 
education = low (illiterate/primary school), medium (middle school/ high school) and high (technical or vocational degree 
/university/master’s degree or higher).  

 

4. Conclusions 

Even though knowing how bodyweight distributions have changed over time is crucial to 

understanding the nature of the rising obesity prevalence, this present study is the first to 

examine such changes in China’s adult population. This knowledge is vital because, just as the 

social welfare implications of rising national income differ greatly dependent on whether 

induced by rapid income growth among the rich (i.e., rising income inequality) or across the 

entire population, so policy responses to rising obesity must vary according to whether driven 

by rapid growth at the upper ends of the bodyweight distribution or a general rightward 

distributional shift. In addition, although obesity inequality is generally recognized as an 

important indicator of well-being – a multidimensional domain that at minimum encompasses 

not only income but health, nutrition and education – measures of social inequality still focus 

almost exclusively on income or expenditure. Obesity inequality is thus empirically interesting 

as a measure capable of capturing the allocation of resources (primarily food) across 

individuals relative to their individual needs (Sahn, 2009).   
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Overall, by using 20 years of CHNS data (1991–2011), our study sheds valuable light on the 

exact nature of the rise in China of both central and general obesity. In particular, our results 

clearly demonstrate a significant rightward shift in both the BMI and WC distributions, with 

first-order stochastic dominance for all wave-to-wave comparisons. Over the two decades 

under analysis, about 90% of the rise in both general and central obesity is attributable to this 

rightward shift. On the other hand, the analysis also reveals a certain degree of distributional 

left-skewing, which reflects increased obesity inequality, about a 14% and 8% increase in the 

Gini coefficient for general and central obesity, respectively. Nonetheless, the 2011 Gini 

coefficients of 0.08 and 0.07 for general and central obesity, respectively, suggest that although 

obesity inequality had risen, it is still much lower than in the U.S., whose general obesity 

coefficient that year was about 0.13 (Pak et al., 2016). As in the U.S., however, the rise in 

obesity inequality in China has been particularly large among younger age groups and women. 

We also document a very strong increase in obesity inequality among rural residents and 

individuals with lower socioeconomic status (low education and income). Nevertheless, the 

rise in aggregate inequality is not being driven by changes in the demographic structure but 

rather by a population-wide increase across all subpopulations.  

When comparing our results with those of Pak et al. (2016) for the U.S., we observe an 

interesting similarity in the transition from the early to later stages of the obesity epidemic (i.e., 

from low to high obesity prevalence); that is, in the early years, obesity inequality rose quite 

rapidly due primarily to a disproportionate rise at the upper end of the bodyweight distribution. 

This pattern is also evident in Sahn’s (2009) analysis of over 70 nationally representative 

surveys from developing countries. Once the epidemic has broadened, however, the growth in 

inequality declines. To some extent, this development parallels the evolution of infectious 

diseases: at its onset, the epidemic disproportionally affects the most vulnerable, which in the 

case of obesity are those already at the upper ends of the BMI distribution. Given a broad body 

of evidence that these individuals are particularly susceptible to peer effects (e.g., Nie et al., 

2015), bodyweight increases among this group tend to spread quickly. As this process 

continues and the condition spreads, then all portions of the population become affected and 

“inequality” becomes less of an issue.   

 

This transitional pattern from low to high obesity has important implications for obesity’s 

consequences: First, rising inequality levels in the early transition can have a particularly strong 

effect on the well-being of individuals at the right tail of the bodyweight distribution whose 
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bodyweight tends to increase more quickly than the population average and is thus more likely 

to deviate from the socially perceived ideal. Indeed, much evidence exists that obesity’s 

negative effects on well-being depend on the extent of the deviation from peer bodyweights 

(Wadsworth and Pendergast, 2014). Thus, policy interventions to combat obesity during the 

early transition should primarily target the groups experiencing the most rapid growth in 

inequality. Focusing on such groups is also important to avoid spill-overs from strong peer 

effects at the upper end of the bodyweight distribution that could lead to rising obesity levels 

(i.e., a rightward distributional shift). Targeted policy interventions could thus profit from the 

so-called social multiplier effect (Fletcher, 2011); that is, the externality inherent in peer effects. 

As the epidemic spreads and obesity becomes a population-wide phenomenon, however 

(represented mainly by a rightward distributional shift), norms and ideals begin to change, 

making higher bodyweight levels more socially acceptable and even desirable. Then, not only 

do obesity’s stigmatizing effects become less of an issue, but the changing norms and ideals 

contribute strongly to its persistency, making policy interventions less effective.  

 

According to our analysis, China is well into the transition phase: obesity prevalence has risen 

substantially (especially in the case of central obesity), and, after a rapid rise, inequality growth 

is declining. The time has thus come to implement interventions targeted at specific groups 

whose obesity inequality is still growing as a particularly rapid pace; most notably, women, 

youth, rural residents, and individuals with lower socioeconomic status.  
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Fig. A1 BMI growth incidence curves by gender  

 

Fig. A2 BMI growth incidence curves by age groups 

 

Fig. A3 BMI growth incidence curves by region  
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Fig. A4 BMI growth incidence curves by education 

 

Fig. A5 BMI growth incidence curves by income 
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Fig. A6 WC growth incidence curves by gender 

 

 

Fig. A7 WC growth incidence curves by age groups 

 

Fig. A8 WC growth incidence curves by region 
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Fig. A9 WC growth incidence curves by income 

 

Fig.A10 WC growth incidence curves by education 
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