

HOHENHEIM DISCUSSION PAPERS IN BUSINESS, ECONOMICS AND SOCIAL SCIENCES

Research Area INEPA

DISCUSSION PAPER 25-2017

LIFESTOCK ASSET DYNAMICS AMONG PASTORALISTS IN NORTHERN KENYA

Samuel Mburu

Egerton University

Micha Kaiser

University of Hohenheim

Alfonso Sousa-Poza

University of Hohenheim

www.wiso.uni-hohenheim.de

Discussion Paper 25-2017

Livestock asset dynamics among pastoralists in Northern Kenya

Samuel Mburu, Micha Kaiser, Alfonso Sousa-Poza

Research Area "INEPA – Inequality and Economic Policy Analysis"

Download this Discussion Paper from our homepage: https://wiso.uni-hohenheim.de/papers

ISSN 2364-2084

Die Hohenheim Discussion Papers in Business, Economics and Social Sciences dienen der schnellen Verbreitung von Forschungsarbeiten der Fakultät Wirtschafts- und Sozialwissenschaften. Die Beiträge liegen in alleiniger Verantwortung der Autoren und stellen nicht notwendigerweise die Meinung der Fakultät Wirtschafts- und Sozialwissenschaften dar.

Hohenheim Discussion Papers in Business, Economics and Social Sciences are intended to make results of the Faculty of Business, Economics and Social Sciences research available to the public in order to encourage scientific discussion and suggestions for revisions. The authors are solely responsible for the contents which do not necessarily represent the opinion of the Faculty of Business, Economics and Social Sciences.

Livestock asset dynamics among pastoralists in Northern Kenya Abstract

Understanding household-level asset dynamics has important implications for designing relevant poverty reduction policies. To advance this understanding, we develop a microeconomic model to analyze the impact of a shock (for example a drought) on the behavioral decisions of pastoralists in Northern Kenya. Using household panel data this study then explores the livestock asset dynamics using both non-parametric and semi-parametric techniques to establish the shape of the asset accumulation path and to determine whether multiple equilibria exist. More specifically, using tropical livestock units as a measure of livestock accumulation over time, we show not only that these assets converge to a single equilibrium but that forage availability and herd diversity play a major role in such livestock accumulation.

Keywords: Poverty dynamics, pastoralists, livestock, semi-parametric estimation, Kenya

Samuel Mburu^{*} Egerton University Tegemeo Institute Along George Padmore Road, Nairobi smburu@tegemeo.org

<u>Micha Kaiser</u> University of Hohenheim Chair for Household and Consumer Economics Fruwirthstraße 48, 70599 Stuttgart Micha.Kaiser@uni-hohenheim.de

<u>Alfonso Sousa-Poza</u> University of Hohenheim Chair for Household and Consumer Economics Fruwirthstraße 48, 70599 Stuttgart alfonso.sousa-poza@uni-hohenheim.de

^{*} The authors gratefully acknowledge the support provided by the Faculty of Business, Economics, and Social Sciences at the University of Hohenheim within the research area "Inequality and Economic Policy Analysis (INEPA)".

Introduction

Even though globally the number of people living in extreme poverty declined from 1.9 billion in 1990 to 836 million in 2015, poverty alleviation remains a key challenge for many countries across the world. In sub-Saharan Africa, for example, over 40 per cent of the population still lives in extreme poverty (that is, less than \$1.25 per day), which the United Nations hopes to eradicate by 2030 as one of its sustainable development goals (United Nations 2015). Another goal is to halve the proportion of those living in poverty in all its dimensions¹ over the same period (OECD 2013; United Nations 2015). Achieving these aims, however, is dependent on effective policies, whose design requires a clear understanding of the underlying welfare dynamics that determine how households escape from or fall into poverty. One particularly crucial factor for poverty alleviation is household accumulation of assets, particularly productive assets that enable them to raise their incomes.

Among pastoralists living in arid and semi-arid areas the key asset for income, food security, wealth, and social status is livestock (Swift 1986), which researchers therefore use as the primary measure to assess poverty and wealth dynamics within this population. In Kenya for example, the pastoralist flock accounts for 50–70 per cent of Kenya's total livestock production (Idris 2011). Despite this considerable contribution, pastoralist livestock are a relatively risky asset, with changes in herd sizes greatly affected by drought and illnesses (Fafchamps 1998). Pastoralist areas in Northern Kenya are particularly characterized by chronic vulnerability to drought-related shocks which has been leading to declining herd sizes over time (Chantarat et al. 2012). The area has experienced 28 droughts in the past 100 years, four of the largest in the period 1998-2008 (Adow 2008).

This study throws further light on the effect of drought on livestock asset dynamics through a three-stage exploration among pastoral households in Northern Kenya's Marsabit district. First, we develop a microeconomic model with which to analyze the impact of a shock like drought on the pastoralists' behavioral decisions. Second, using tropical livestock units, we apply both nonparametric and semiparametric methods to identify the path of asset accumulation and determine the presence (absence) of single and multiple dynamic equilibria. By doing so, we are able to verify the existence of poverty traps. Third, because livestock is this population's main source of livelihood, we assess how household characteristics and environmental factors influence livestock accumulation over time, an aspect that warrants closer examination given the prevalence of droughts and inadequate insurance mechanisms.

This study contributes to the literature in four ways: First, few of the extant empirical studies on asset dynamics in developing countries provide a theoretical framework that can explain how households react to environmental change. To begin filling this gap, our microeconomic model sheds light on how a shock influences such factors as livestock holdings, consumption, and aid. Second, because our work draws on unique panel data from the International Livestock Research Institute's (ILRI) Index-Based Livestock Insurance (IBLI) project, it is one of the most comprehensive studies to date on asset dynamics among pastoralists. Third, our analysis extends previous research by applying both non- and semiparametric techniques to compare the estimations of livestock asset dynamics. Finally, our investigation identifies the effect of forage availability (proxied by satellite data) on livestock accumulation, which few other studies do.

The remainder of the paper is organized as follows: Section 2 outlines our theoretical model of how a pastoralist household reacts to an external shock. Section 3 then reviews the relevant research on asset welfare dynamics. Section 4 describes our data, after which section 5 explains our methodological approach. Section 6 reports and discusses our results, and section 7 concludes the paper.

Asset dynamics model

Household welfare dynamics tend to be described in terms of three presumptions: unconditional convergence, conditional convergence, or multiple dynamic equilibria (Carter and Barrett 2006). Unconditional convergence hypothesizes that all households tend to move to a single long-term equilibrium, meaning that asset dynamics follow a concave path. Under conditional convergence, welfare dynamics follow a similar path to that in single stable equilibrium except that each household subgroup moves toward its own equilibrium. In both the conditional and unconditional convergence conditions, therefore, poverty traps can only occur if the long-term equilibrium is below the poverty line. Under the multiple dynamic equilibria presumption, however, the welfare path follows a nonconvex pattern with two stable high and low equilibria and an unstable threshold point (Naschold 2013). Households with assets below the unstable threshold point lose their assets and tend toward a chronically poor state, while households with assets above the threshold point tend to accumulate assets and move toward higher levels of welfare.

Figure 1. Different asset accumulation paths

In the different paths depicted in Figure 1, the vertical axis shows the current assets (A_t) and the horizontal axis, the lagged asset holdings (A_{t-n}) . Unconditional convergence is represented

by line $f_2(A_t)$ for which only a single equilibrium exists at its intersection with the 45⁰ line. Conditional convergence is represented by functions $f_2(A_t)$ and $f_3(A_t)$ for different household subgroups, each with its own equilibrium. The unconditional convergence represented by functions $f_2(A_t)$ and $f_3(A_t)$ implies structural asset poverty if the stable equilibrium points **B*** and **B**** lie below the poverty line. Line $f_1(A_t)$, which crosses the 45⁰ line three times, represents multiple dynamic equilibria, with points **A*** and **A**** designating a stable low-level and highlevel equilibrium, respectively, and Point **A**' representing the unstable threshold point at which assets bifurcate. When the poverty line lies below A**, point A' represents the dynamic asset poverty threshold moving above which leads to asset accumulation until long-run equilibrium is reached at point A**. Movement below A' propels households toward the low-level equilibrium at A*.

Clearly identifying the levels and shape of household welfare dynamics has important policy implications. For a single dynamic equilibrium, the key question is whether the equilibrium is below or above the poverty line. If above the poverty line, then policy needs to focus on how to support households in maintaining and raising their welfare levels so as to speed up the convergence process. If the equilibrium is below the poverty line, households are likely to be trapped in poverty, implying a need for structural changes that raise household welfare levels. In the case of pastoralists, this latter could take the form of more livestock provision accompanied by such asset protection measures as livestock insurance and forage preservation. In the presence of multiple equilibria, it is the household's initial condition that matters. If the household starts above (below) the critical threshold, it can be expected to move toward higher (lower) welfare levels. This situation thus requires policy measures that ensure households do not fall below the threshold, especially after adverse shocks. In this case, designing efficient policies requires clear identification of the threshold point (Naschold 2012; Giesbert and Schindler 2012).

To assess how shocks that shift pastoralists away from such an equilibrium translate into behavioral changes, we develop a model based on standard neoclassical growth (Romer 1994; Mixon and Sockwell 2007; Walsh 2000). We focus on a representative pastoralist agent characterized by the following utility function:

$$u(c_t, l_t^h, l_t^e) = c_t^{\alpha} + \beta ln(1 - l_t^h) + \gamma ln(1 - l_t^e)$$
⁽¹⁾

where c_t is consumption in period t, l_t^h is labor time allocated to one's own livestock in period t, and l_t^e is labor time on the local labor market, where $\alpha \in (0,1]$ and $\beta, \gamma \in \mathbb{R}_+$ represent the output elasticities. The pastoralist agent must thus choose between l_t^h and l_t^e while taking the following time constraint into consideration:

$$l_t^h + l_t^e + F_t = \omega_t \tag{2}$$

where $F_t = F$ is leisure time, and $\omega_t = \omega$ is total available time. Normalizing $\omega - F \equiv 1$ then yields the following constraint:

$$l_t^h + l_t^e = 1 \tag{3}$$

Because our setting is intertemporal, the pastoralist agent faces the following optimization problem (with $\xi \in (0,1]$ being the pastoralist's intertemporal discount factor and E_0 the expectations operator):

$$max_{c_{t},l_{t}^{h},l_{t}^{e},k_{t+1}}E_{0}\left[\sum_{t=0}^{\infty}\xi^{t}u(c_{t},l_{t}^{h},l_{t}^{e})\right]$$
(4)

This latter is subject to the following constraints:

$$k_{t+1} = k_t^{\ \tau} - \delta k_t^{\ \tau} + l_t^h k_t^{\ \tau} - c_t + w_t l_t^e + (\mu) * ex \, p(z_t) * k_t^{\ \tau} + A(k_t, z_t)$$
(5a)

$$l_t^h + l_t^e = 1 \tag{5b}$$

$$\lim_{t \to \infty} \xi \frac{u'(c_{t+1})}{u'(c_0)} k_t = 0$$
(5c)

$$z_t = \rho z_{t-1} + \varepsilon \qquad \epsilon \sim N(0, \sigma^2) \tag{5d}$$

Equation (5a) describes the transition equation of capital (k) (that is, the motion of livestock over time, with $\tau \in (0,1)$ being the elasticity of livestock accumulation). Capital in k_{t+1} is thus

influenced by the time-independent depreciation rate δ (where $\delta \in (0,1)$), the pastoralist consumption c_t in t, and the share of time devoted to l_t^h and l_t^e . This last aspect, time allocation, is the crucial decision for pastoralists in rural areas who can either tend their own livestock or work for a certain wage w_t in the labor market. Capital stock can also be influenced by the shock term (μ) * $exp(z_t)$, where z_t is assumed to be an AR(1) autoregressive shock process (where $\rho \in (0,1)$), and μ (where $\mu \in \mathbb{R}_+$) reflects the impact of the shock on the pastoralists' livestock. We further assume that the pastoralists receive aid, represented by the function $A: \mathbb{R}^2 \to \mathbb{R}_+$, where $A(k_t, z_t) > 0$, $\frac{\partial A(k_t, z_t)}{\partial k_t} < 0 \nabla k_t \in \mathbb{R} \setminus \{0\}$ and $\frac{\partial A(k_t, z_t)}{\partial z_t} < 0 \nabla z_t \in \mathbb{R}$. The second constraint is given by the time constraint from Equation (5b), the third constraint (Equation 5c) is the so-called transversality condition, which ensures that ultimately, no capital is left. Because the marginal benefit of working in the labor market is determined by wage w_t , our model also includes the optimization problem for a representative firm:

$$max_{l_t^e}Q(l_t^e) = y(l_t^e) - \varphi(l_t^e)$$
(6)

with *y* and φ given by:

$$y(l_t^e) = P(l_t^e)^{\Gamma} exp(z_t)$$
$$\varphi(l_t^e) = w_t l_t^e$$

For the sake of simplicity, we assume that firms only use labor l_t^e as an input factor in the production function y, where $(P \in \mathbb{R}_+)$ is the total factor productivity and Γ ($\Gamma \in (0,1)$) is the output elasticity. We also normalize prices to 1. Again, $exp(z_t)$ represents the impact of the AR(1) shock process on the firm's output, while $\varphi(l_t^e)$ reflects the explicit cost function. The representative firm maximizes its profit $Q(l_t^e)$ by choosing the optimal amount of labor l_t^e in each period t.

If we solve both optimization problems (Equations (4) and (6)), we can reformulate the resulting calculations to obtain equations (7a), (7b) and (7c) and combine with equations (5a), (5b) and

(5d) as the following set of characterizing equations for the model (detailed description of the derivation and proofs are given in the Appendix):

$$\xi E_t \{ c_{t+1}^{(\alpha-1)} [(l_{t+1}^h + 1 - \delta + (\mu) exp(z_{t+1})) \tau k_{t+1}^{\tau-1} + \frac{\partial A(k_{t+1}, z_{t+1})}{\partial k_{t+1}}] \} = c_t^{(\alpha-1)}$$
(7a)

$$\frac{(1-l_t^h)\gamma}{(1-l_t^e)\beta} = \frac{w_t}{k_t^{\tau}}$$
(7b)

$$w_t = P\Gamma l_t^{e^{(\Gamma-1)}} exp(z_t) \tag{7c}$$

$$k_{t+1} = k_t^{\tau} - \delta k_t^{\tau} + l_t^h k_t^{\tau} - c_t + w_t l_t^e + (\mu) * ex \, p(z_t) * k_t^{\tau} + A(k_t, z_t)$$
$$l_t^h + l_t^e = 1$$
$$z_t = \rho z_{t-1} + \varepsilon$$

Equation (7a) can be interpreted as the Euler equation that links consumption in period t to consumption period t+1. It is evident that the intertemporal consumption decision depends not only on the expected work time allocation in the next period but also on expectations of the marginal benefits of next period's aid. We also observe that the proportion of l_t^h and l_t^e is related to both capital stock and wage (equation 7b) and that wage is positively influenced by the pastoralist's external labor force participation (equation 7c). Given our interest in how a shock affects equilibrium, we must first solve for a steady state. Because we cannot solve for a steady state algebraically without restricting our model, we compute the steady state results numerically.²

The analysis also requires that we specify an explicit form for our aid function A:

$$A(k_t, z_t) = \frac{\theta}{\exp(k_t)} + r - \zeta \exp(z_t), \tag{8}$$

This specification satisfies the conditions for the aid function outlined above; that is, it is characterized by a constant stream of aid, $r \in \mathbb{R}_+$, and two parameters $\theta \in \mathbb{R}_+$ and $\zeta \in (0,1]$, which represent an aid sensitivity factor with regard to livestock and the extent of the aid flow's reaction to shock, respectively. The aid stream thus depends inversely on the pastoralists' capital stock, as well as on the impact of particular shocks. Based on previous literature and economic considerations (Wang et al. 2016; Liebenehm and Waibel 2014; Poulos and Whittington 2000; Holden et al. 1998 for time preferences), we use the parameter values in Table 1 to compute the steady state:³

Table 1. Parameter values used to compute the steady state

α	β	γ	ξ	ζ	μ	δ	θ	r	Р	τ	ρ	σ	Г
0.5	1	2	0.8	0.5	1	0.05	3	2	1	0.78	0.92	0.1	0.8

These parameters yield one single stable equilibrium characterized by the following steady state values:

Table 2. Estimated steady state values

Variable	ī	le	$l^{\overline{h}}$	k	Ī	Ŵ	Ā
Steady state value	10.15	0.08	0.92	14.19	0	1.33	1.5

In equilibrium, we obtain a relatively high value for consumption relative to that for livestock (approximately 71% of the livestock score), which might be expected to give our assumption of a high discount rate (and thus a low discount factor). In our model, the low discount factor forces our representative agent (the pastoralist) to consume his livestock in the current period instead of saving it to produce more livestock tomorrow, which is in line with the empirical findings by (Liebenehm and Waibel 2014; Holden et al. 1998). The allocation of time to internal and external labor forces also shows a plausible pattern: our pastoralist devotes about 92 per cent of his time to his own livestock and only about 8 per cent to working elsewhere in the local economy. Figure 2 illustrates the k_t policy function, which maps the livestock of period t-1 onto the livestock in period t while all other variables remain unchanged (that is, it is a function

of the form $k_t = g(k_{-1})$). As expected in second order Taylor polynomial approximation, the policy function k is concave and intercepts with the 45° line at about 14.1, the same steady state value for livestock computed previously. This outcome indicates that the pastoralist accumulates livestock until a value of about 14.1, which is the stable equilibrium. If a positive or negative shock occurs, the livestock returns to its initial value. The function's special concave pattern, which includes a diminishing slope,⁴ is a result of using a second-order Taylor polynomial approximation in calculating the steady state.

Figure 2: Policy function for kt

Of particular interest to our analysis is the effect of a shock on the transition back to the steady state. To shed light on this issue, we use the impulse response function graphs displayed in Figure 3. In this analysis, we consider a negative one standard deviation shock to the system, with all variables set to their steady state values in the initial situation (and a normalized steady state value of 0 for all variables). The shock influences the economy in several ways. First, it forces a one standard deviation decrease in the AR(1) process in the first period with a smooth

and monotonic increase back to the steady state value thereafter. Because the shock term is also included in the aid function, aid immediately has a positive reaction to the negative shock. However, the aid function is also influenced by a second factor: the shock's negative influence on the pastoralist's livestock, which is reflected in the graph by the decrease in capital stock k_t in the first period. Because aid is assumed to be negatively related to the pastoralist's livestock, this influence again leads to a reinforcement of aid's positive reaction. The shock also engenders a decrease in wages, which in turn has an immediate feedback effect on the pastoralist's decision on time allocation for labor and thus on capital accumulation. The fact that our livestock accumulation function is concave in k produces higher marginal returns with a lower capital stock, which results in the pastoralist allotting more time to tending his own livestock. This effect is again reinforced by the negative wage effect in the labor market, which decreases his incentives to seek work in the local economy.

As regards consumption, the pastoralist reduces consumption slightly up to a certain point but then increases it again until it reaches the old equilibrium. In fact, comparing the different shock reactions of capital and consumption shows no sudden reduction in consumption during the first period but rather a smooth (and thus delayed) adjustment that leads to a reinforcement of capital stock reduction in the following period and consequently, a reduction in consumption. This process continues until the capital stock starts to grow again (due to the reinforcement of the pastoralist tending his own livestock), which also drives an increase in consumption. As regards the time needed for the economy to adjust, it takes about 60 periods for consumption, capital, aid, the AR(1) process, and the wage to return to equilibrium. Both labor time allocations (l_t^e , l_t^h) reach their initial steady state values after about five to eight periods, which is the same point in time that capital and consumption are at their lowest levels. During this period, the pastoralist increases the time spent working in the local economy while decreasing the time taken tending his own livestock relative to the steady state value. After this short increase (decrease) in labour, the work time decisions converge (with slight fluctuations) back to the steady state, reaching initial values after about 40 periods.

In sum, a negative shock like a drought leads to an immediate decrease in livestock followed by a smooth reduction in consumption. Because the shock also affects the local economy, it prompts a wage decrease, which reinforces the pastoralist's incentives to tend his own livestock and reduce time spent in the external labor market. Whereas the pastoralist's labor time allocation shows a pattern of quick convergence, however, the adjustment of other variables takes much longer. Finally, although aid initially increases in response to the shock, thereafter it converges smoothly.

Figure 3. Impulse response functions of a one standard deviation shock of $\boldsymbol{\varepsilon}$

Note: The horizontal axes are time periods. The vertical axes can be interpreted as deviations from the generalized steady state (for more information, see (Pfeifer 2014) *Source:* Authors' own calculations using Dynare.

In addition to assessing immediate reactions to a shock, we also examine how the local pastoralist economy develops over time. To do so, we simulate the economy based on our randomized shock distribution and compute the time paths for the variables of interest. We run our simulations twice: once assuming a comparatively low volatility for shocks ($\sigma = 0.1$) and again assuming a comparatively high volatility ($\sigma = 0.2$). Figure 4, which illustrates the different time patterns for internal and external labor, capital, and consumption for different values of σ , reveals several interesting insights. First, the lower bound of the fluctuations in capital and consumption reveals no large differences in the fluctuation patterns of low versus high volatility cases, implying that shock volatility plays no crucial role in determining the (absolute) negative impact on a pastoralist's livestock. This observation suggests that higher shock volatility does not necessarily lead to an increase in periods with very low capital stocks. This finding does not hold, however, for the upper bound in which higher volatility leads to more and longer periods of higher capital accumulation (and higher consumption).

The graphs for internal and external labor follow the same pattern, with the lower bound (external labor) and higher bound (internal labor) of the two fluctuation patterns showing little difference. The upper bound (external labor) and lower bound (internal labor), however, reveal stronger differences in the labor time allocation in the high volatility case, which can also be linked to the pattern of consumption and capital. Comparing the two upper and two lower graphs reveals that the pastoralist tends to increase his external labor force only in periods during which the economic cycle reaches its peak, implying that when volatility is low, he focuses mainly on tending his own livestock.

Overall, these findings suggest that when shock volatility is comparatively low, pastoralists focus on tending their own livestock, but simulating an economy with high volatility produces higher positive fluctuations in both capital and consumption. In periods with high capital stock, these fluctuations tend to move pastoralists away from tending their own livestock (internal labor) toward working in the local labor market (external labor). The underlying rationale is that in boom phases of the economy, both livestock and wages are quite high, so the marginal utility of external labor (wages) is higher and more beneficial to the pastoralist, than the marginal utility of internal labor.

Figure 4. Simulations of the economy with low ($\sigma = 0.1$, red line) and high volatility ($\sigma = 0.2$, black line) *Source:* Authors' own calculations using Dynare.

Previous research

Although several studies have investigated household welfare dynamics, their conclusions differ: some point to only a single equilibrium, while others identify multiple equilibria. For example, in a longitudinal exploration of asset accumulation determinants in Bangladesh aimed at explaining why some households are trapped in poverty, Quisumbing and Baulch (2013) identify a single low-level equilibrium with no evidence for multiple equilibria. Likewise, Naschold (2012), in a study of poverty dynamics in rural semi-arid India, finds only a single stable equilibrium ranging between 2.8 poverty line units (PLUs) for a one-year lag and 3.2 PLUs for a three-year lag. A similar convergence to a single equilibrium close to the poverty line (about 9.95 PLUs or approximately US147 dollars annual income per adult) is also reported by Giesbert and Schindler (2012) in their exploration of welfare dynamics among rural households in Mozambique. On the other hand, Barrett et al.'s (2006) analysis of panel data from five different sites in rural Kenya and Madagascar identifies multiple dynamic equilibria. Specifically, herd dynamics bifurcate at five to six TLU⁵ per capita, above which level herd size grows to a higher equilibrium of 10 TLU per capita and below which it tends to decline to a low-level equilibrium of less than one TLU per capita. A similar analysis by Lybbert et al. (2004) using 17 years of herd history data (1980–1997) from four communities in Southern Ethiopia's Borana plateau also reveals two stable lower and higher asset equilibria at herd sizes of one and 40-75 animals, respectively. The threshold point for the unstable equilibrium is at around 10–15 animals. Such multiple equilibria are not identified, however, in Mogues' (2004) nonparametric analysis of livestock asset dynamics in Ethiopia, which shows only a convergence to 3.5 TLUs over a three-year period. Nevertheless, Liverpool-Tasie and Winter-Nelson's (2011) estimation of asset and expenditure-based poverty using 1994-2004 panel data for Ethiopia reveals both a low and high stable equilibrium, although it is worth noting that these authors used an asset index based on a range of household assets.

The research also indicates that social, economic, and environmental shocks are important determinants of household poverty. For example, Quisumbing and Baulch (2013) show that negative shocks have negative effects on asset accumulation, while positive shocks such as remittances and dowry lead to asset accumulation. For pastoralists specifically, Lybbert et al. (2004) establish that both household characteristics (such as income) and covariate risks (most notably drought) play a major role in wealth dynamics. Indeed, the serious effects of drought and hurricanes on poor households in Ethiopia and Honduras are clearly illustrated by Carter et al. (2007), who demonstrate that during times of food shortage, these households destabilize their consumption and preserve the few assets they own for future survival. The families even reduce the number of meals per day or serve smaller food rations. Zimmerman and Carter (2003) further show that because poor households have less profitable assets, when faced with income shocks, they pursue asset smoothing rather than consumption smoothing. This observation is confirmed by Hoddinott (2006), who finds that poor households faced with income losses smooth their assets, while non-poor households sell livestock to smooth consumption.

The extant research also underscores the major role of social networks in building household resilience. For example, several studies show that social capital is key in mitigating the risks faced by households and thus helping them recover after loss (Fafchamps 2000; Fafchamps and Minten 1999; Mogues 2004; Liverpool-Tasie and Winter-Nelson 2011). Both household social ties and the nature of relationships affect the levels of asset holding over time. For instance, in the pastoral setting, informal sharing of livestock allows households to borrow livestock after loss as an informal insurance arrangement. Conversely, persistently poor households are systematically excluded from social networks that could provide credit that would enable them to respond to shocks (Lybbert et al. 2004; Santos Barrett 2011). Hence, in an environment in which formal insurance and credit markets are unavailable, social groups and networks serve an important role

in risk management and the provision of cheap credit. Studies also show that gender-based associations and kinship groups allow farmers to overcome periods of climatic and economic difficulties (Goheen 1996).

Study Area and Data

Study area

Our study area, Marsabit district, is characterized by an arid or semi-arid climate (rainfall of up to 200 mm/year in the lowlands and 800mm/year in the highlands), drought, poor infrastructure, remote settlements, low market access, and low population density (about 4 inhabitants per km²). This area, which covers about 12 per cent of the national territory, is home to about 0.75 per cent of the Kenyan population and encompasses several ethnicities – including Samburu, Rendille, Boran, Gabra, and Somali – each with its own distinct language, culture, and customs. These pastoral communities live in semi-nomadic settlements in which livestock, the main source of livelihood, is moved across vast distances in search of grazing pastures, especially during the dry season. Largely dependent on milk from livestock (mainly camels or cattle) for home consumption, these communities also trade or sell animals (primarily goats and sheep) to purchase food and other commodities (Fratkin et al. 2005). Marsabit has two major ecological/livelihood zones: an arid and primarily pastoral upper zone and a semi-arid, more agro-pastoral lower zone.

Data

Because the households in our study area face persistent shocks arising mainly from drought, it is most important to develop a clear understanding of livestock accumulation paths across households. To do so, we use panel data collected as part of the International Livestock Research Institute's (ILRI) Index-Based Livestock Insurance (IBLI) project, implemented in the Marsabit district of Northern Kenya, which administered a pre-intervention baseline survey in 2009 complemented by annual follow-ups from 2010 to 2015. For all these survey waves, information was collected in 16 sublocations using a sample proportionally stratified on the basis of the 1999 household population census. First, households are classified into three wealth categories based on livestock holdings converted into TLUs: low (<10 TLU), medium (between 10 and 20 TLU), and high (>20 TLU). Within each sublocation, one third of the location-specific sample is randomly selected from each of these wealth categories, which are then used to randomly generate a list of additional households to be used as replacements when needed. For example, if a low, medium, or high wealth household cannot successfully be re-interviewed, it is replaced by an equivalent household during subsequent surveys, yielding a consistent sample of 924 households across all surveys. Our analysis uses the five survey waves (2009-2013).

In our analysis, we measure drought risk using remote sensing data from the NDVI (Normalized Difference Vegetation Index), a satellite-generated indicator of the amount of vegetation cover based on levels and amount of photosynthetic activity (Tucker et al. 2005). When the lack of sufficient rainfall reduces the levels of vegetative greenness, the lower NDVI values indicate forage scarcity. NDVI data are used not only in several studies that apply remote sensing for drought management (Rasmussen 1997; Kogan 1995; Unganai and Kogan 1998) but also by the IBLI, which is being implemented in Northern Kenya and Southern Ethiopia to provide a market-mediated livestock insurance among pastoralists (Chantarat et al. 2012). Research confirms that NDVI values are particularly reliable in arid and semi-arid areas with little cloud cover (Fensholt et al. 2006). The NDVI uses the intensity of photosynthetic activity to gauge the amount of vegetation cover within a given area. NDVI image data, which are available from the U.S. National Aeronautical and Space Administration (NASA), are gathered by a moderate resolution imaging spectroradiometer (MODIS) on board NASA's Aqua and Terra satellites (Tucker et al., 2005). These values are translated into a standardized NDVI Z-score, originally generated in designing

the livestock insurance index for Northern Kenya (Chantarat et al. 2012), by computing the value for any pixel i of a 16-day d in year t:

$$zndvi_{idt} = \frac{ndvi_{idt} - E_d(ndvi_{idt})}{\sigma_d(ndvi_{idt})}$$
(9)

where $ndvi_{idt}$ is the NDVI image of pixel *i* for period *d* of year *t* and $E_d(ndvi_{idt})$ and $\sigma_d(ndvi_{idt})$ are the long-term mean and long-term standard deviation, respectively, of NDVI values for 16-day *ds* of pixel *i* taken over 2000–2009. Positive (negative) values represent better (worse) vegetation conditions relative to the long-term mean. As is evident, the NDVI is a good indicator of the extent of greenness – and thus the amount of vegetation – in a given area. Because livestock in pastoral production systems depend almost entirely on available forage for nutrition, the NDVI serves as a strong indicator of forage availability. It is also directly correlated with rainfall and hence considered a good measure of biomass productivity (Fensholt et al. 2006).

To ensure that our analysis accounts for such regional differences as agroecology, herd composition, and climatic patterns, we divide the study area into four regions: Central and Gadamoji, Maikona, Laisamis, and Loiyangalani.⁶ We then extract for these four regions the average ZNDVI values for the long rainy season (March, April, and May) in each survey year, allocating to each household the annual NDVI Z-score for its respective region (Chantarat et al. 2012).

Descriptive statistics

The descriptive statistics for our key variables (see Table 3) show a declining trend in the number of livestock owned (represented by TLUs) between 2009 and 2013. This decline is more pronounced from 2011 onward, possibly because of drought experienced in 2009 and 2011. The average family has six members, while the average age of the household head is about 50 years. The uptake of livestock insurance is highest in 2010 (26.3%) but then declines at an overall

mean rate of 13.6 per cent of the uptake. Herd migration is quite common, with an average of 72.4 per cent of households moving their livestock in the 2009–2013 period. This migration enables pastoralists to respond to changes in forage and water availability at different times across rangelands. One aspect that shows an increase over time is membership in women's groups, which enable members to save and borrow money for household needs such as food and school fees. In terms of other assistance, more households are receiving cash aid than food aid, although with an increase in both types in the drought years of 2009 and 2011. The mean livestock diversity remains quite constant, indicating that households kept the same types of animals over the study period.

Table 3. Summary of	of key	household	charac	teristics
---------------------	--------	-----------	--------	-----------

Key variables	Full	2009	2010	2011	2012	2013
TLUs	13.8	16.1	16.5	11.5	11.9	12.7
Age of head (years)	48.8	47.9	47.7	48.5	49.5	50.4
Household size	5.9	5.6	5.7	5.6	6.4	6.4
Have livestock insurance (%)	13.6	0.0	26.3	24.4	8.7	8.8
Moved livestock ^a (%)	72.4	63.2	76.7	72.7	75.6	74
Belong to women's group ^b (%)	35.9	28.7	34.7	38.1	37.6	40.8
Receiving food aid (%)	8.3	8.5	4.8	18.5	6.5	3.4
Receiving cash aid (%)	32.6	20.9	26.1	33.7	48.1	34.6
Herd diversity index ^c	0.38	0.37	0.36	0.39	0.38	0.38
ZNDVI long rains ^d	-0.05	-0.75	0.61	-0.78	0.27	0.42

Notes: Results are based on IBLI data for a consistently sized sample of 924 households

^a Percent of households that migrated their livestock in search of grazing pastures

^b Percent of households with a member belonging to a women's group

^c Shannon-Weiner Diversity Index

^d ZNDVI is the standardized normalized difference vegetation index for the long rain season (March-May season) for each year

The average herd diversity index is 0.38 for the full sample based on a range from one, high diversity, to zero, no diversity. In both 2009 and 2011, the study area suffered major drought whose severity is reflected by the low NDVI Z-scores for those years. The notable improvement in NDVI Z-scores since 2012, on the other hand, indicates improved forage availability in the rangelands. The mean TLUs of livestock owned during the survey period, shown in Table 4, indicate

consistently declining ownership, which implies that the households were becoming steadily livestock poorer over time. Given that livestock is the key productive asset among the surveyed households, this consistent decline means diminishing wealth and standard of living, especially when non-livestock economic opportunities are limited. Further disaggregation of livestock owned by sublocation, reveals that households in the Sagante, Dirib Gombo and Loiyangalani sublocations have the smallest herd sizes.

Table 4. Mean TLUs of livestock owned during the survey period

Livestock type	2009	2010	2011	2012	2013
Camels	7.1	7.7	6.4	6.3	6.4
Cattle	4.5	3.8	2.3	2.5	2.9
Sheep/goats	4.6	5.1	3.1	3.4	3.6

Note: The TLUs are computed for each animal species from all households owning livestock at the time of each survey, which numbered 854, 859, 858, 869, and 860, respectively.

The livestock data also reveal interesting trends in the drivers of livestock accumulation and deaccumulation across the survey period. Specifically, they show rather low livestock offtake transactions, with the sales of sheep and goats being more common because they are easier to sell for ready cash to meet urgent household needs. The reasons for livestock sales are varied: a need for cash income (46.1%), as a coping strategy in times of drought (38.5%), and/or for cultural reasons such as dowry (5.0%). The highest livestock losses are recorded for sheep and goats, especially in 2011, whereas camels, being more adapted to drought conditions and more able to withstand prolonged dry periods, are least affected. Livestock losses are mainly attributable to death from drought or starvation (45.7%), disease (31.1%), or predation (10.4%). The number of cattle sold and the number lost have a positive correlation coefficient of 0.30, indicating that livestock sales and losses occur simultaneously. This latter may indicate that households sell cattle mostly as a coping mechanism when faced with the risk of losing their herd, especially during drought periods. Similarly, few animals are slaughtered, except in 2011 when more sheep and goats

are slaughtered than other livestock types. The main reasons for slaughtering are home consumption (42.3%) and ceremonies (41.1%), with only 8 per cent slaughtered for sale (mostly camels and cattle). Households obtain livestock in various ways: as gifts (47.7%), purchases (19.1%), loans (18.7%), or dowry payments (7.7%). After losing animals, usually from drought or disease, households borrow mainly female animals from relatives or friends in the community. They benefit from the milk but are expected to return the animal upon calving or after a certain period. The main reasons for livestock intake are expanding stock (46.0%), restocking after losses (15.0%), or as a traditional or cultural right (14.1%). As expected, more sheep and goat births are reported than cattle or camel births because of the shorter gestation period. These livestock births make the highest contribution to livestock accumulation (approximately 80% in all rounds), with livestock intake in the form of purchases or gifts contributing little (about 20%). Natural reproduction is thus the main driver of herd accumulation, which could explain the slow growth in herd size over the study period given that calving is affected by both the animals' condition and forage availability. Livestock de-accumulation is mainly attributable to losses from starvation or disease fatalities, which at 70 per cent is highest in the drought year of 2011. In fact, the data indicate that starvation and disease account for 47 per cent and 30.5 per cent of livestock losses, respectively. Moreover, although livestock offtake is relatively low, it does show an increase from 20 per cent in 2011 to 40 per cent in 2013. Given the low rate of livestock slaughter, livestock losses must necessarily be the dominant factor in these diminishing livestock trends.

Methodology

Because our primary research interest is in assessing the relation between past and future assets (expressed as TLUs), we estimate a function of the following form:

$$A_{it} = f(A_{it-n}) + \epsilon_{it} \tag{10}$$

where A_{it} represents household *i*'s assets at time period *t*, A_{it-n} represents the lagged assets, and ϵ_{it} is the error term that is normally distributed with a zero mean and constant variance. In estimating Equation (10), we use both nonparametric and semiparametric methods to allow for a nonlinear relation between current and lagged assets. One important assumption for these estimations is that all households have the same underlying asset accumulation path.

Nonparametric estimations

Nonparametric estimation involves fitting a function to the data that is assumed to be smooth and have covariates that are uncorrelated with the error term. This error term is in turn assumed to be normally and identically distributed with an expected value of zero. We employ the locally weighted scatterplot smoother (LOWESS), also used by Lybbert et al. (2004) and Barrett et al. (2006) in their dynamic asset equilibrium analyses, a method attractive for its use of a variable bandwidth and its robustness to outliers, which minimizes boundary problems (Cleveland 1979; Cameron and Trivedi 2009). LOWESS performs a locally weighted regression of two variables and displays the plotted graph.

Semiparametric estimations

We find it necessary to add semiparametric estimation into our analysis because both parametric and nonparametric estimation techniques have limitations. Whereas parametric specifications have difficulty identifying unstable points in areas with few observations and need large samples if fitted polynomial functions are to accurately reflect the few observations around the thresholds, nonparametric estimation is limited in how much it can control for (Naschold 2013). Semiparametric techniques, in contrast, have a flexible functional form for asset path dynamics and can also control for other variables linearly. We represent our semiparametric model as follows:

$$A_{it} = \beta_0 + f(A_{it-n}) + X_{it}\beta_1 + N_{it}\beta_2 + T_i\beta_3 + R_i\beta_4 + \epsilon_{it}$$
(11)

where A_{it} represents household i's current TLUs owned, A_{it-n} its lagged TLUs owned, and X_{it} include a set of household control variables that could influence livestock dynamics. These include; age of household head, household size, a dummy for membership in a women's group, and a dummy for households purchasing livestock insurance during the survey period. Because diversifying herds is an important risk minimization strategy for pastoralists (that is, mixing small and large stock optimizes grazing pasture use), we include herd diversity index derived from the Shannon-Weiner Diversity Index⁷ that captures both species dominance and evenness (Achonga et al. 2011). This index, which ranges from zero, no diversity, to one, high diversity, yields an average of 0.38. Here, N_{it} represents the average ZNDVI values for the long rainy season in each year; T_i represents the time period dummy, R_i the regional dummy, and ϵ_{it} the error term. The X_{it} , N_{it} , and T_i variables are estimated linearly, whereas the relation between assets (A_{it}) and lagged assets (A_{it-n}) is estimated non-parametrically. We also use the Hardle and Mammen (1993) test to determine whether the polynomial adjustment is of 1 or 2 degrees.⁸ Specifically, to check the robustness of the changes in livestock assets over time, we estimate a fourth-order polynomial regression of the lagged assets while controlling for household, regional, and time-specific variables:

$$A_{it} = \beta_0 + f(A_{it-1}) + (A_{it-1})^2 + (A_{it-1})^3 + (A_{it-1})^4 + X_{it}\beta_1 + N_{it}\beta_2 + T_i\beta_3 + R_i\beta_4 + \epsilon_{it}$$
(12)

Although the TLUs are greater than 100 in a few cases, for this analysis, we consider them outliers and thus exclude them to obtain a clear asset path. These excluded cases represent less than 1 per cent of the entire sample.

Results and Discussion

Nonparametric results

The nonparametric estimations for the locally weighted scatter plot smoother (LOWESS) are graphed in Figure 5, which shows trends in 2009 and 2013 for a one-year and four-year lag, respectively. The curves of both these lags intersect the 45° line only once, indicating only one stable equilibrium to which household livestock accumulation converges. The one-year lag curve intersects the 45° line at around 18 TLUs, while the four-year lag curve does so at a lower level (15 TLUs).

Figure 5. Nonparametric estimation of lagged TLU dynamic path (one-year and four-year lags

Because the nonparametric estimation does not control for covariates that could also influence asset accumulation, we use a semiparametric estimation to take such factors into account (see Figure 7). After controlling for other key covariates, the stable equilibrium decreases to around 10–13 TLUs at the lower confidence interval with a slope that is flatter than in the nonparametric case.

As Figure 6 clearly illustrates, we observe one single equilibrium,⁹ a converging path that may partly reflect contrasting household strategies. That is, whereas livestock endowed households faced with limited credit access tend to smooth consumption during food shortages by selling or slaughtering livestock, livestock poor households use such coping strategies as meal reduction or rely more on food aid rather than depleting their already small livestock holdings. This interpretation is in line with Hoddinott's (2006) finding that poorer households, when faced with income loss, tend to preserve their few animals to ensure a future herd while those with more livestock smooth consumption through livestock sales. Similar findings are reported by Giesbert and Schindler (2012) and Carter et al. (2007).

Figure 6. Semiparametric estimation of TLU-based dynamic path

To better understand the livestock assets convergence path, we look at how households actually cope during times of food shortage, We specifically examine the proportion of households that sell or slaughter livestock during times of food shortage. Our results show that 37.2 per cent of the

households sell livestock, 39.9 per cent reduce the number of meals, and 5.8 per cent increase nonlivestock activities. These responses are in line with the predictions of our theoretical model that following a shock, both consumption and livestock holdings will decline. Interestingly, households that sell livestock as a primary coping strategy own more livestock (an average of 20.1 TLUs), while households that reduce the number of meals or increase the number of non-livestock activities own fewer animals (an average of 9.7 TLUs and 5.9TLUs, respectively).

Semiparametric and polynomial estimates

The semiparametric and polynomial regression coefficient estimates are presented in Table 5, which shows that the average NDVI Z-score for the long rainy season have a positive and statistically significant effect on livestock accumulation. More specifically, in the parsimonious model, a one standard deviation increase in NDVI Z-score leads to a 2.76 increase in TLUs, although this effect declines slightly to 2.46 TLUs once we control for other covariates. Herd diversity is also positive and statistically significant: a one unit increase in herd diversity leads to a 4.8 unit increase in TLUs, a figure that changes little when other covariates are controlled for. Evidently, by keeping different livestock species in their herd, pastoralists can manage risks like drought and optimize grazing pastures more fully. More specifically, small livestock like sheep and goats can browse well in areas with minimal pastures, while camels can survive better during prolonged periods of drought.

Although the index-based livestock insurance offered enables households to mitigate risks related to livestock deaths from drought, its effect is positive but not significant, perhaps because of the low number of households insured. Households in Loyangalani region are worse off than households in the Central and Gadamoji region. The coefficients for all survey years are negative (although only significant for wave two), indicating a consistent decline in livestock owned over the five-year period. The polynomial estimates are quite similar to the semiparametric results, with a significantly negative lagged cubed TLU that indicates diminishing marginal returns to assets. The predicted curve for the fourth-degree polynomial regression is shown in the Appendix.

	(1)	(2)	(3)	(4)
	Semiparametric	Semiparametric	Semiparametric	Polynomial
ZNDVI (long rains)	2.7613***		2.6997***	2.7961***
_	(0.301)		(0.308)	(0.315)
Herd diversity index		4.8447^{***}	5.0742***	4.9392^{***}
		(0.611)	(0.616)	(0.608)
Household size			0.0502	0.0406
			(0.073)	(0.075)
Have insurance $(1 = yes)$			0.0057	0.0446
			(0.401)	(0.405)
Belong to a women's			0.4916	0.4427
group (1=yes)				
			(0.329)	(0.334)
Receive food aid (1=yes)			-0.5238	-0.4301
• •			(0.627)	(0.629)
Receive cash aid (1=yes)			-0.3617	-0.3372
			(0.327)	(0.332)
Lagged TLU				0.8327***
				(0.111)
Lagged TLU squared				0.0067
				(0.008)
Lagged TLU cubed				-0.0003*
				(0.000)
Lagged TLU quadruped				0.0000^{**}
				(0.000)
Constant				-0.4365
				(0.577)
Ν	3197	3197	3196	3196
Adi. R^2	0.028	0.017	0.047	0.617

Table 5. Factors influencing livestock accumulation over time

Note: Robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01. Region and time dummies are estimated but not shown.

Because we also recognize that despite the rich set of covariates in our dataset, certain important characteristics might still be unobservable, we exploit the longitudinal nature of the data by also including a fixed effects model to account for time-invariant individual characteristics (see Table

6). The models within transformation also eliminates invariant unobservables that might be correlated with our covariates of interest.

	(1)	(2)	(3)
	FE	FE	FE
ZNDVI (long rains)	0.5124***		0.8194***
-	(0.190)		(0.219)
Herd diversity index		6.8349***	6.9992***
-		(1.212)	(1.214)
Household size			-0.4784**
			(0.220)
Have insurance $(1 = yes)$			-0.0945
-			(0.401)
Belong to a women's group $(1 = ves)$			-0.7611
S of C Job			(0.464)
Receive food aid $(1 = yes)$			-0.3968
			(0.548)
Receive cash aid $(1 = yes)$			-1.3859***
			(0.343)
Constant	13.8212***	11.0405***	17.2954***
	(0.008)	(0.489)	(1.375)
N	4258	4258	4257
Adj. R^2	0.001	0.016	0.039

Table 6. Fixed effects regression estimates of factors influencing livestock accumulation

Note: Robust standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01. Region and time dummies are estimated but not shown

The results of the fixed effects model support the semiparametric regressions. Herd diversity and NDVI Z-score are positive and significant with minimal change when other covariates are controlled for. We also note that cash aid received is negative and significant, which could be interpreted as reverse causality in that cash aid tends to go to households with few livestock. Household size is also negative and significant, perhaps because larger families sell or slaughter more livestock than smaller families. The regression analysis also implies that forage availability as proxied by NDVI Z-score and herd diversity is a key determinant of livestock accumulation among pastoralists.

Conclusions

The livestock dynamics of pastoral households are especially important because of the disrupting influences of regular and severe droughts in the study area. According to the microeconomic model developed in this study, such droughts negatively affect both livestock holdings and consumption. The model also indicates that the adjustment of capital, consumption, aid, and wages back to the long-term steady state equilibrium takes longer than the transition of internal and external labor supply. Our results also reveal that, in contrast to the case of low volatility, higher shock volatility does not necessarily lead to an increase in the number of periods with very low capital accumulation and low levels of consumption. This observation is in line with the theoretical model that shows that pastoralists only greatly increase their participation in external labor when volatility is high and the economic cycle, peaking. In other circumstances, they tend to concentrate primarily on tending their own livestock.

Our nonparametric and semiparametric analyses also point to the existence of a single equilibrium, although the semiparametric penalized splines which control for other covariates that affect livestock accumulation produces lower equilibria values than the nonparametric results. As previously stressed, such convergence to a stable equilibrium could result from households with more livestock smoothing their consumption during times of food shortage by drawing on their herds for sale or consumption while livestock poor households smooth their assets by using coping strategies such as relying more on food aid or reducing the number of meals that do not deplete their few livestock holdings. Poor households thus destabilize their consumption to buffer and protect their few assets for future income and survival. These results also imply that forage availability and herd diversity influence livestock accumulation over time. Although these findings are similar to those in several studies on asset dynamics and poverty traps (Naschold 2012; Mogues 2004; Quisumbing and Baulch 2009), other studies based on pastoral livestock holdings identify multiple equilibria (for example Barrett et al. 2006; Lybbert et al. 2004). These latter, however, cover much longer time lags (13 and 17 years, respectively) in different economies suggesting that our five-year interval may simply not be long enough to illustrate long-run livestock dynamics given the slow changes observed in livestock assets. This possibility apart, the consistently declining livestock trends and few options for livestock intake available among the households in our sample support the notion of a movement toward a single low-level stable equilibrium. Such a conclusion is also in line with Lybbert et al.'s (2004) evidence that to sustain mobile pastoralism on the East African rangelands, a household should have at least 10–15 animals. In our study, only 30 per cent of the households have a herd size of more than 15 animals, suggesting that holding more than this herd size is unsustainable; holdings greater than the equilibrium will eventually collapse to the equilibrium value.

In the presence of the single low-level stable equilibrium observed here, household asset poverty can only be alleviated through structural change that raises the equilibrium asset level. Ways to effect such change include interventions that raise the returns to existing assets and the provision of a broad range of physical, social and human productive assets that eventually raise the level of the welfare equilibrium. In addition, because accumulation of livestock in the study area is greatly hindered by drought, households should be supported in strengthening their risk management mechanisms against negative shocks. Our findings also suggest that implementing welfare enhancing measures such as safety nets and forage conservation is crucial to lifting these poor households out of asset poverty.

References

- Achonga, B.O., Lagat, J.K. & Akuja, T.E. (2011). Evaluation of the diversity of crop and livestock enterprises among agro-biodiversity farmer field schools (ABD-FFS) and non-ABD-FFS households in Bondo District, Kenya. *Journal of Applied Biosciences*, 38, pp.2586–2591.
- Adow, M. (2008). Pastoralists in Kenya. Paper presented at the Conference on Climate Change and Forced Migration, April 29, London: Institute for Public Policy Research.
- Barrett, C., Marenya, P., Mcpeak, J., Minten, B., Murithi, F., Oluoch-Kosura, W., Place, F., Randrianarisoa, J., Rasambainarivo, J. & Wangila, J. (2006). Welfare dynamics in rural Kenya and Madagascar. *Journal of Development Studies*, 42(November 2014), pp.248–277.
- Cameron, A. & Trivedi, P. (2009). Microecometrics Using Stata, College Station: Stata Press.
- Carter, M., Little, P., Mogues, T. & Negatu, W. (2007). Poverty Traps and Natural Disasters in Ethiopia and Honduras. *World Development*, 35(5), pp.835–856.
- Carter, M.R. & Barrett, C.B. (2006). The economics of poverty traps and persistent poverty: An asset-based approach. *Journal of Development Studies*, 42(2), pp.178–199.
- Chantarat, S., Mude, A.G., Barett, C. & Carter, M. (2012). Designing Index-Based Livestock Insurance for Managing Asset Risk in Northern Kenya. *Journal of Risk and Insurance*, 80(1), pp.205–237.
- Cleveland, W. (1979). Robust locally weighted regression and smoothing scatterplots. *Journal of the American Statistical Association*, 74, pp.829–836.
- Fafchamps, M. (2000). Ethnicity and credit in African manufacturing. *Journal of Development Economics*, 61(1), pp.205–235.
- Fafchamps, M. (1998). The Tragedy of the Commons, Livestock Cycles and Sustainability. *Journal of African Economies*, 7(3), pp.384–423.
- Fafchamps, M. & Minten, B., 1999. Relationships and traders in Madagascar. *Journal of Development Studies*, 35(6), pp.1–35.
- Fensholt, R., Nielsen, T.T. & Stisen, S. (2006). Evaluation of AVHRR PAL and GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation data for the African continent. *International Journal of Remote Sensing*, 27(March 2015), pp.2719–2733.
- Fratkin, E., Roth, E. & Abella, E. (2005). As pastoralists settle: Social, health, and economic consequences of the pastoral sedentarization in Marsabit district, Kenya. New York: Kluwer.
- Giesbert, L. & Schindler, K. (2012). Assets, Shocks, and Poverty Traps in Rural Mozambique. *World Development*, 40(8), pp.1594–1609.
- Goheen, M. (1996). Men own the Fields, Women own the Crops: Gende and Power in the Cameroon Grassfields. University of Wisconsin Press.
- Heady, H. (1975). Rangeland management. New York, NY: McGraw-Hill.
- Hoddinott, J. (2006). Shocks and their consequences across and within households in Rural Zimbabwe. *Journal of Development Studies*, 42(2), pp.301–321.
- Holden, S.T., Shiferaw, B. & Wik, M. (1998). Poverty, market imperfections and time preferences of relevance for environmental policy? *Environment and Development Economics*, (3),

pp.105-130.

- Idris, A. (2011). Taking the camel through the eye of a needle: Enhancing pastoral resilience through education policy in Kenya. *Resilience: Interdisciplinary Perspectives on Science and Humanitarianism*, 2(March), pp.25–38.
- Kogan, F.N. (1995). Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. *Bulletin of the American Meteorological Society*, 76(5), pp.655–668.
- Liebenehm, S. & Waibel, H. (2014). Simultaneous estimation of risk and time preferences among small-scale cattle farmers in West Africa. *American Journal of Agricultural Economics*, 96(5), pp.1420–1438.
- Liverpool-Tasie, L.S.O. & Winter-Nelson, A. (2011). Asset versus consumption poverty and poverty dynamics in rural Ethiopia. *Agricultural Economics*, 42(2), pp.221–233.
- Lybbert, T., Barrett, C., Desta, S. & Coppock, D. (2004). Stochastic wealth dynamics and risk management among a poor population. *Economic Journal*, 114(498), pp.750–777.
- Mixon, J.W. & Sockwell, W.D. (2007). The Solow Growth Model. *The Journal of Economic Education*, 38(4), pp.483–483.
- Mogues, T. (2004). *Shocks, livestock asset dynamics, and social capital in Ethiopia.*, Wisconsin-Madison: University of Wisconsin-Madison.
- Naschold, F. (2012). "The Poor Stay Poor": Household Asset Poverty Traps in Rural Semi-Arid India. *World Development*, 40(10), pp.2033–2043.
- Naschold, F. (2013). Welfare Dynamics in Pakistan and Ethiopia Does the Estimation Method Matter? *Journal of Development Studies*, 49(7), pp.936–954.
- OECD, (2013). *Keeping the multiple dimensions of poverty at the heart of development*, Paper 1, Organisation for Economic Cooperation and Development.
- Pfeifer, J. (2014). A Guide to Specifying Observation Equations for the Estimation of DSGE Models, University of Mannheim Working paper, pp.1–63.
- Poulos, C. & Whittington, D. (2000). Time preferences for life-saving programs: Evidence from six less developed countries. *Environmental Science and Technology*, 34(8), pp.1445–1455.
- Quisumbing, A. & Baulch, B. (2009). *Assets and poverty traps in rural Bangladesh*, Washington DC: World Bank.
- Rasmussen, M.S. (1997). Operational yield forecast using AVHRR NDVI data: Reduction of environmental and inter-annual variability. *International Journal of Remote Sensing*, 18(5), pp.1059–1077.
- Ratto, M. (2009). Sensitivity analysis toolbox for DYNARE. European Commission, Joint Research Centre.
- Romer, P.M. (1994). The Origins of Endogenous Growth. *The Journal of Economis Perspectives*, 8(1), pp.3–22.
- Santos, P. & Barrett, C.B. (2011). Persistent poverty and informal credit. *Journal of Development Economics*, 96(2), pp.337–347.
- Swift, J. (1986). The economics of production and exchange in West African pastoral societies, in

Pastoralists of the West African Savanna, Manchester University Press.

- Tucker, C., Pinzon, J., Brown, M., Slayback, D., Pak, E., Mahoney, R., Vermote, E. & El Saleous, N. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. *International Journal of Remote Sensing*, 26(20), pp.4485–4498.
- Unganai, L.S. & Kogan, F.N. (1998). Drought monitoring and corn yield estimation in southern Africa from AVHRR data. *Remote Sensing of Environment*, 63(3), pp.219–232.
- United Nations, (2015). Millenium Development Goals Report, New York: United Nations.
- Walsh, C.E. (2000). Monetary Theory and Policy, California: University of California.
- Wang, M., Rieger, M.O. & Hens, T. (2016). How time preferences differ: Evidence from 53 countries. *Journal of Economic Psychology*, 52, pp.115–135.
- Whitehead, G. (1978). Elements of homotopy theory, Springer.
- Zimmerman, F.J. & Carter, M.R. (2003). Asset smoothing, consumption smoothing and the reproduction of inequality under risk and subsistence constraints. *Journal of Development Economics*, 71(2), pp.233–260.

Appendix. Fourth-order polynomial prediction of lagged livestock assets

Note: Four-year lagged livestock in TLUs (2009–2013)

Mathematical Appendix

Proposition 1: The Euler equation links the consumption of the household and takes the following form:

$$\xi E_t \{ c_{t+1}^{(\alpha-1)} [(l_{t+1}^h + 1 - \delta + (\mu) exp(z_{t+1})) \tau k_{t+1}^{\tau-1} + \frac{\partial A(k_{t+1}, z_{t+1})}{\partial k_{t+1}}] \} = c_t^{(\alpha-1)} \{ c_t^{(\alpha-1)} [(l_{t+1}^h + 1 - \delta + (\mu) exp(z_{t+1})) \tau k_{t+1}^{\tau-1} + \frac{\partial A(k_{t+1}, z_{t+1})}{\partial k_{t+1}}] \} = c_t^{(\alpha-1)} \{ c_t^{(\alpha-1)} [(l_{t+1}^h + 1 - \delta + (\mu) exp(z_{t+1})) \tau k_{t+1}^{\tau-1} + \frac{\partial A(k_{t+1}, z_{t+1})}{\partial k_{t+1}}] \} = c_t^{(\alpha-1)} \{ c_t^{(\alpha-1)} [(l_{t+1}^h + 1 - \delta + (\mu) exp(z_{t+1})) \tau k_{t+1}^{\tau-1} + \frac{\partial A(k_{t+1}, z_{t+1})}{\partial k_{t+1}}] \} = c_t^{(\alpha-1)} \{ c_t^{(\alpha-1)} [(l_{t+1}^h + 1 - \delta + (\mu) exp(z_{t+1})) \tau k_{t+1}^{\tau-1} + \frac{\partial A(k_{t+1}, z_{t+1})}{\partial k_{t+1}}] \} \}$$

Proof:

The Bellman equation of the household's optimization problem has the following form:

$$\begin{aligned} V(k_{t}) &= \max_{c_{t}, l_{t}^{h}, l_{t}^{e}, k_{t+1}} \left\{ u(c_{t}, l_{t}^{h}, l_{t}^{e}) + \xi E_{t} V(k_{t+1}) \right\} \\ \text{s.t.} \quad k_{t+1} &= k_{t}^{\tau} - \delta k_{t}^{\tau} + l_{t}^{h} k_{t}^{\tau} - c_{t} + w_{t} l_{t}^{e} + (\mu) * ex \, p(z_{t}) * k_{t}^{\tau} + \frac{\theta}{exp(k_{t})} + r - \zeta exp(z_{t}) \\ l_{t}^{h} + l_{t}^{e} &= 1 \\ \lim_{t \to \infty} \xi \frac{u'(c_{t+1})}{u'(c_{0})} k_{t} &= 0 \\ z_{t} &= \rho z_{t-1} + \varepsilon \qquad \epsilon \sim N(0, \sigma^{2}) \end{aligned}$$

Setting up the Lagrangian function yields the following equation:

$$V(k_{t}) = max_{c_{t},l_{t}^{h},l_{t}^{e},k_{t+1}} \{c_{t}^{\alpha} + \beta ln(1 - l_{t}^{h}) + \gamma ln(1 - l_{t}^{e}) + \xi E_{t}\{V(k_{t+1})\}\}$$
$$+\lambda_{t}[k_{t+1} - (k_{t}^{\tau} - \delta k_{t}^{\tau} + l_{t}^{h}k_{t}^{\tau} - c_{t} + w_{t}l_{t}^{e} + (\mu) * ex p(z_{t}) * k_{t}^{\tau}$$
$$+ \frac{\theta}{exp(k_{t})} + r - \zeta exp(z_{t}))]$$

The first order conditions of $V(k_t)$ with respect to c_t , l_t^h , l_t^e , k_{t+1} and λ_t are then given by:

(1)
$$\alpha c_t^{\alpha-1} + \lambda_t = 0$$

(2)
$$\frac{-\beta}{1-l_t^h} - \lambda_t k_t^{\ \tau} = 0$$

(3)
$$\frac{-\gamma}{1-l_t^e} - \lambda_t w_t = 0$$

(4)
$$\xi E_t \{ V'(k_{t+1}) \} + \lambda_t = 0$$

(5)
$$k_{t+1} - (k_t^{\tau} - \delta k_t^{\tau} + l_t^h k_t^{\tau} - c_t + w_t l_t^e + (\mu) * ex \, p(z_t) * k_t^{\tau} + \frac{\theta}{exp(k_t)} + r - \zeta exp(z_t)) = 0$$

To obtain the Euler equation we need first to compute $V'(k_t)$:

$$\begin{split} V'(k_{t}) &= \frac{\partial u(c_{t}l_{t}^{h}l_{t}^{e})}{\partial c_{t}} \frac{\partial c_{t}}{\partial k_{t}} + \frac{\partial u(c_{t}l_{t}^{h}l_{t}^{e})}{\partial l_{t}^{h}} \frac{\partial l_{t}^{h}}{\partial k_{t}} + \frac{\partial u(c_{t}l_{t}^{h}l_{t}^{e})}{\partial l_{t}^{e}} \frac{\partial l_{t}^{e}}{\partial k_{t}} + \xi E_{t} \left\{ V'(k_{t+1}) \frac{\partial k_{t+1}}{\partial k_{t}} \right\} + \frac{\partial \lambda_{t}}{\partial k_{t}} [k_{t+1} - (k_{t}^{T} - \delta k_{t}^{T} + l_{t}^{h}k_{t}^{T} - c_{t} + w_{t}l_{t}^{e} + (\mu) * ex p(z_{t}) * k_{t}^{T} + \frac{\theta}{exp(k_{t})} + r - \zeta exp(z_{t}))] + \\ &\lambda_{t} [\frac{\partial k_{t+1}}{\partial k_{t}} - (rk_{t}^{T-1} - \delta \tau k_{t}^{T-1} + (\frac{\partial l_{t}^{h}}{\partial k_{t}} k_{t}^{T} + l_{t}^{h} \tau k_{t}^{T-1}) - \frac{\partial c_{t}}{\partial k_{t}} + w_{t} \frac{\partial l_{t}^{e}}{\partial k_{t}} + (\mu) * ex p(z_{t}) * \\ &\tau k_{t}^{T-1} - \frac{\theta}{exp(k_{t})})] \end{split}$$

$$&= \alpha c_{t}^{\alpha-1} \frac{\partial c_{t}}{\partial k_{t}} - \frac{\beta}{1 - l_{t}^{h}} \frac{\partial l_{t}^{h}}{\partial k_{t}} - \frac{\gamma}{1 - l_{t}^{e}} \frac{\partial l_{t}^{e}}{\partial k_{t}} + \xi E_{t} \left\{ V'(k_{t+1}) \frac{\partial k_{t+1}}{\partial k_{t}} \right\} + \frac{\partial \lambda_{t}}{\partial k_{t}} [k_{t+1} - (k_{t}^{T} - \delta k_{t}^{T} + l_{t}^{h} k_{t}^{T} - c_{t} + w_{t} l_{t}^{e} + (\mu) * ex p(z_{t}) * \\ &\tau k_{t}^{T-1} - \frac{\theta}{exp(k_{t})})] \end{aligned}$$

$$&= \alpha c_{t}^{\alpha-1} \frac{\partial c_{t}}{\partial k_{t}} - \frac{\beta}{1 - l_{t}^{h}} \frac{\partial l_{t}^{h}}{\partial k_{t}} - \frac{\gamma}{1 - l_{t}^{e}} \frac{\partial l_{t}^{e}}{\partial k_{t}} + \xi E_{t} \left\{ V'(k_{t+1}) \frac{\partial k_{t+1}}{\partial k_{t}} \right\} + \frac{\partial \lambda_{t}}{\partial k_{t}} [k_{t+1} - (k_{t}^{T} - \delta k_{t}^{T} + l_{t}^{h} k_{t}^{T} - c_{t} + w_{t} l_{t}^{e} + (\mu) * ex p(z_{t}) * k_{t}^{T} + \frac{\theta}{exp(k_{t})} + r - \zeta exp(z_{t}))] + \lambda_{t} \left[\frac{\partial k_{t+1}}{\partial k_{t}} - (\tau k_{t}^{T-1} - \delta \tau k_{t}^{T-1}) - \frac{\partial c_{t}}{\partial k_{t}} + w_{t} \frac{\partial l_{t}^{e}}{\partial k_{t}} + (\mu) * ex p(z_{t}) * \tau k_{t}^{T-1} - \delta \tau k_{t}^{T-1} - \frac{\theta}{exp(k_{t})})] \right] \\ = (\alpha c_{t}^{\alpha-1} + \lambda_{t}) \frac{\partial c_{t}}{\partial k_{t}} + \left(-\frac{\beta}{1 - l_{t}^{h}} - \lambda_{t} k_{t}^{T} \right) \frac{\partial l_{t}^{h}}{\partial k_{t}} + \left(-\frac{\gamma}{1 - l_{t}^{e}} - \lambda_{t} w_{t} \right) \frac{\partial l_{t}^{e}}{\partial k_{t}} + \xi E_{t} \left\{ (V'(k_{t+1}) + \lambda_{t}) \frac{\partial k_{t+1}}{\partial k_{t}} \right\} + \frac{\partial \lambda_{t}}{\partial k_{t}} \left[k_{t+1} - \left(k_{t}^{T} - \delta k_{t}^{T} + l_{t}^{h} k_{t}^{T} - c_{t} + w_{t} l_{t}^{e} + (\mu) * ex p(z_{t}) * k_{t}^{T} + \frac{\theta}{exp(k_{t})}} \right] \right] \\ \\ = \left(\alpha c_{t}^{\alpha-1} + \lambda_{t$$

The last term in combination with the first order conditions yields:

(6)
$$V'(k_t) = -\lambda_t (\tau k_t^{\tau-1} - \delta \tau k_t^{\tau-1} + l_t^h \tau k_t^{\tau-1} + (\mu) * ex \, p(z_t) * \tau k_t^{\tau-1} - \frac{\theta}{exp(k_t)})$$

Combination of (1) and (4) yields the following expression:

(7)
$$\alpha c_t^{\alpha-1} = \xi E_t \{ V'(k_{t+1}) \}$$

Taking (6) one period forward and inserting in (7) while replacing $-\lambda_t$ using equation (1) yields the Euler equation:

$$\xi E_t \{ c_{t+1}^{(\alpha-1)} [(l_{t+1}^h + 1 - \delta + (\mu) exp(z_{t+1})) \tau k_{t+1}^{\tau-1} - \frac{\theta}{exp(k_t)}] \} = c_t^{(\alpha-1)}$$

Lemma: The marginal rate of substitution between time allocated to tend the own livestock in period t, and time allocated to work on the local labor market is given by $\frac{(1-l_t^h)\gamma}{(1-l_t^e)\beta} = \frac{w_t}{k_t^{\tau}}$

Proof:

Dividing equation (3) by equation (2) yields the result.

Proposition 2: Wages are determined by the firm optimization problem and are given by $w_t = P \Gamma l_t^{e(\Gamma-1)} exp(z_t)$

Proof:

The firms optimization problem is given by:

$$max_{l_t^e}Q(l_t^e) = y(l_t^e) - \varphi(l_t^e)$$

with *y* and φ given by:

$$y(l_t^e) = P(l_t^e)^{\Gamma} exp(z_t)$$
$$\varphi(l_t^e) = w_t l_t^e$$

This yields the following first order condition:

$$P\Gamma(l_t^e)^{\Gamma-1}ex\,p(z_t)-w_t=0$$

Rearranging then yields:

$$w_t = P\Gamma l_t^{e(\Gamma-1)} \exp(z_t)$$

Endnotes

- ¹ Poverty dimensions encompass a range of deprivation factors, including poor health, lack of income and education, inadequate living standards, poor work quality, and threat of violence (OECD 2013).
- ² For both the steady state computation and the analysis, we use the Dynare software package implemented in Matlab. Because Dynare solves for steady state using a nonlinear Newtonian solver that does not work in all specifications, in these latter cases, we derive valid results by applying the homotopy concept (for more information see (Whitehead 1978)).
- ³ Because we assume that the disutility of working in the external labor market is higher for pastoralists than tending their own livestock, we set $\gamma > \beta$. We also use the regional sensitivity analysis implemented in Dynare to check for parameter values which can cause no stable solutions of the system (Ratto, 2009). By using the Kolmogorov-Smirnov test statistic we identify only ξ , μ and τ as being potential driver for instability. In particular, low values of ξ will lead to a non-convergence of the model.
- ⁴ Using a first-order approximation does not affect the steady state value, but the policy function is linear rather than concave.
- ⁵ The TLUs help to quantify the different livestock types in a standardized manner. Under resource driven grazing conditions, the average feed intake among species is quite similar, about 1.25 times the maintenance requirements (1 for maintenance, and 0.25 for production; that is, growth, reproduction, milk). Metabolic weight is thus considered the best unit for aggregating animals from different species, whether for the total amount of feed consumed, manure produced, or product produced. The standard used for one tropical livestock unit is one cow with a body weight of 250 kg (Heady 1975), so that 1 TLU = 1 head of cattle, 0.7 of a camel, or 10 sheep or goats.
- ⁶ The North Horr region is not covered in the household survey and is thus excluded from our analysis.
- ⁷ $H = -\sum_{i=1}^{r} p_i ln p_i$ After calculating the proportion of livestock species *i* relative to the total number of species TLUs (p_i), we multiply it by its natural logarithm ($\ln p_i$), sum the resulting product across species (camel, cattle, sheep, and goats), and multiply it by -1.
- ⁸ Hardle and Mammen (1993) suggest the use of simulated values obtained by wild bootstrapping, in which inability to reject the null (that is, acceptance of the parametric model) means that the polynomial adjustment is at least of the degree tested. We reject the null hypothesis (p < 0.05) for the two tests and thus accept the use of the semiparametric model.
- ⁹ Re-running the analysis using two-year and three-year lags does not change the results: the estimated curves show only a single dynamic equilibrium.

Hohenheim Discussion Papers in Business, Economics and Social Sciences

The Faculty of Business, Economics and Social Sciences continues since 2015 the established "FZID Discussion Paper Series" of the "Centre for Research on Innovation and Services (FZID)" under the name "Hohenheim Discussion Papers in Business, Economics and Social Sciences".

Institutes

- 510 Institute of Financial Management
- 520 Institute of Economics
- 530 Institute of Health Care & Public Management
- 540 Institute of Communication Science
- 550 Institute of Law and Social Sciences
- 560 Institute of Economic and Business Education
- 570 Institute of Marketing & Management
- 580 Institute of Interorganisational Management & Performance

Research Areas (since 2017)

INEPA	"Inequality and Economic Policy Analysis"
TKID	"Transformation der Kommunikation – Integration und Desintegration"
NegoTrans	"Negotiation Research - Transformation, Technology, Media and Costs"
INEF	"Innovation, Entrepreneurship and Finance"

Download Hohenheim Discussion Papers in Business, Economics and Social Sciences from our homepage: https://wiso.uni-hohenheim.de/papers

No.	Author	Title	Inst
01-2015	Thomas Beissinger, Philipp Baudy	THE IMPACT OF TEMPORARY AGENCY WORK ON TRADE UNION WAGE SETTING: A Theoretical Analysis	520
02-2015	Fabian Wahl	PARTICIPATIVE POLITICAL INSTITUTIONS AND CITY DEVELOPMENT 800-1800	520
03-2015	Tommaso Proietti, Martyna Marczak, Gianluigi Mazzi	EUROMIND-D: A DENSITY ESTIMATE OF MONTHLY GROSS DOMESTIC PRODUCT FOR THE EURO AREA	520
04-2015	Thomas Beissinger, Nathalie Chusseau, Joël Hellier	OFFSHORING AND LABOUR MARKET REFORMS: MODELLING THE GERMAN EXPERIENCE	520
05-2015	Matthias Mueller, Kristina Bogner, Tobias Buchmann, Muhamed Kudic	SIMULATING KNOWLEDGE DIFFUSION IN FOUR STRUCTURALLY DISTINCT NETWORKS – AN AGENT-BASED SIMULATION MODEL	520
06-2015	Martyna Marczak, Thomas Beissinger	BIDIRECTIONAL RELATIONSHIP BETWEEN INVESTOR SENTIMENT AND EXCESS RETURNS: NEW EVIDENCE FROM THE WAVELET PERSPECTIVE	520
07-2015	Peng Nie, Galit Nimrod, Alfonso Sousa-Poza	INTERNET USE AND SUBJECTIVE WELL-BEING IN CHINA	530

No.	Author	Title	Inst
08-2015	Fabian Wahl	THE LONG SHADOW OF HISTORY ROMAN LEGACY AND ECONOMIC DEVELOPMENT – EVIDENCE FROM THE GERMAN LIMES	520
09-2015	Peng Nie, Alfonso Sousa-Poza	COMMUTE TIME AND SUBJECTIVE WELL-BEING IN URBAN CHINA	530
10-2015	Kristina Bogner	THE EFFECT OF PROJECT FUNDING ON INNOVATIVE PERFORMANCE AN AGENT-BASED SIMULATION MODEL	520
11-2015	Bogang Jun, Tai-Yoo Kim	A NEO-SCHUMPETERIAN PERSPECTIVE ON THE ANALYTICAL MACROECONOMIC FRAMEWORK: THE EXPANDED REPRODUCTION SYSTEM	520
12-2015	Volker Grossmann Aderonke Osikominu Marius Osterfeld	ARE SOCIOCULTURAL FACTORS IMPORTANT FOR STUDYING A SCIENCE UNIVERSITY MAJOR?	520
13-2015	Martyna Marczak Tommaso Proietti Stefano Grassi	A DATA-CLEANING AUGMENTED KALMAN FILTER FOR ROBUST ESTIMATION OF STATE SPACE MODELS	520
14-2015	Carolina Castagnetti Luisa Rosti Marina Töpfer	THE REVERSAL OF THE GENDER PAY GAP AMONG PUBLIC-CONTEST SELECTED YOUNG EMPLOYEES	520
15-2015	Alexander Opitz	DEMOCRATIC PROSPECTS IN IMPERIAL RUSSIA: THE REVOLUTION OF 1905 AND THE POLITICAL STOCK MARKET	520
01-2016	Michael Ahlheim, Jan Neidhardt	NON-TRADING BEHAVIOUR IN CHOICE EXPERIMENTS	520
02-2016	Bogang Jun, Alexander Gerybadze, Tai-Yoo Kim	THE LEGACY OF FRIEDRICH LIST: THE EXPANSIVE REPRODUCTION SYSTEM AND THE KOREAN HISTORY OF INDUSTRIALIZATION	520
03-2016	Peng Nie, Alfonso Sousa-Poza	FOOD INSECURITY AMONG OLDER EUROPEANS: EVIDENCE FROM THE SURVEY OF HEALTH, AGEING, AND RETIREMENT IN EUROPE	530
04-2016	Peter Spahn	POPULATION GROWTH, SAVING, INTEREST RATES AND STAGNATION. DISCUSSING THE EGGERTSSON- MEHROTRA-MODEL	520
05-2016	Vincent Dekker, Kristina Strohmaier, Nicole Bosch	A DATA-DRIVEN PROCEDURE TO DETERMINE THE BUNCHING WINDOW – AN APPLICATION TO THE NETHERLANDS	520
06-2016	Philipp Baudy, Dario Cords	DEREGULATION OF TEMPORARY AGENCY EMPLOYMENT IN A UNIONIZED ECONOMY: DOES THIS REALLY LEAD TO A SUBSTITUTION OF REGULAR EMPLOYMENT?	520

No.	Author	Title	Inst
07-2016	Robin Jessen, Davud Rostam-Afschar, Sebastian Schmitz	HOW IMPORTANT IS PRECAUTIONARY LABOR SUPPLY?	520
08-2016	Peng Nie, Alfonso Sousa-Poza, Jianhong Xue	FUEL FOR LIFE: DOMESTIC COOKING FUELS AND WOMEN'S HEALTH IN RURAL CHINA	530
09-2016	Bogang Jun, Seung Kyu-Yi, Tobias Buchmann, Matthias Müller	THE CO-EVOLUTION OF INNOVATION NETWORKS: COLLABORATION BETWEEN WEST AND EAST GERMANY FROM 1972 TO 2014	520
10-2016	Vladan Ivanovic, Vadim Kufenko, Boris Begovic Nenad Stanisic, Vincent Geloso	CONTINUITY UNDER A DIFFERENT NAME. THE OUTCOME OF PRIVATISATION IN SERBIA	520
11-2016	David E. Bloom Michael Kuhn Klaus Prettner	THE CONTRIBUTION OF FEMALE HEALTH TO ECONOMIC DEVELOPMENT	520
12-2016	Franz X. Hof Klaus Prettner	THE QUEST FOR STATUS AND R&D-BASED GROWTH	520
13-2016	Jung-In Yeon Andreas Pyka Tai-Yoo Kim	STRUCTURAL SHIFT AND INCREASING VARIETY IN KOREA, 1960–2010: EMPIRICAL EVIDENCE OF THE ECONOMIC DEVELOPMENT MODEL BY THE CREATION OF NEW SECTORS	520
14-2016	Benjamin Fuchs	THE EFFECT OF TEENAGE EMPLOYMENT ON CHARACTER SKILLS, EXPECTATIONS AND OCCUPATIONAL CHOICE STRATEGIES	520
15-2016	Seung-Kyu Yi Bogang Jun	HAS THE GERMAN REUNIFICATION STRENGTHENED GERMANY'S NATIONAL INNOVATION SYSTEM? TRIPLE HELIX DYNAMICS OF GERMANY'S INNOVATION SYSTEM	520
16-2016	Gregor Pfeifer Fabian Wahl Martyna Marczak	ILLUMINATING THE WORLD CUP EFFECT: NIGHT LIGHTS EVIDENCE FROM SOUTH AFRICA	520
17-2016	Malte Klein Andreas Sauer	CELEBRATING 30 YEARS OF INNOVATION SYSTEM RESEARCH: WHAT YOU NEED TO KNOW ABOUT INNOVATION SYSTEMS	570
18-2016	Klaus Prettner	THE IMPLICATIONS OF AUTOMATION FOR ECONOMIC GROWTH AND THE LABOR SHARE	520
19-2016	Klaus Prettner Andreas Schaefer	HIGHER EDUCATION AND THE FALL AND RISE OF INEQUALITY	520
20-2016	Vadim Kufenko Klaus Prettner	YOU CAN'T ALWAYS GET WHAT YOU WANT? ESTIMATOR CHOICE AND THE SPEED OF CONVERGENCE	520

No.	Author	Title	Inst
01-2017	Annarita Baldanzi Alberto Bucci Klaus Prettner	CHILDRENS HEALTH, HUMAN CAPITAL ACCUMULATION, AND R&D-BASED ECONOMIC GROWTH	INEPA
02-2017	Julius Tennert Marie Lambert Hans-Peter Burghof	MORAL HAZARD IN VC-FINANCE: MORE EXPENSIVE THAN YOU THOUGHT	INEF
03-2017	Michael Ahlheim Oliver Frör Nguyen Minh Duc Antonia Rehl Ute Siepmann Pham Van Dinh	LABOUR AS A UTILITY MEASURE RECONSIDERED	520
04-2017	Bohdan Kukharskyy Sebastian Seiffert	GUN VIOLENCE IN THE U.S.: CORRELATES AND CAUSES	520
05-2017	Ana Abeliansky Klaus Prettner	AUTOMATION AND DEMOGRAPHIC CHANGE	520
06-2017	Vincent Geloso Vadim Kufenko	INEQUALITY AND GUARD LABOR, OR PROHIBITION AND GUARD LABOR?	INEPA
07-2017	Emanuel Gasteiger Klaus Prettner	ON THE POSSIBILITY OF AUTOMATION-INDUCED STAGNATION	520
08-2017	Klaus Prettner Holger Strulik	THE LOST RACE AGAINST THE MACHINE: AUTOMATION, EDUCATION, AND INEQUALITY IN AN R&D-BASED GROWTH MODEL	INEPA
09-2017	David E. Bloom Simiao Chen Michael Kuhn Mark E. McGovern Les Oxley Klaus Prettner	THE ECONOMIC BURDEN OF CHRONIC DISEASES: ESTIMATES AND PROJECTIONS FOR CHINA, JAPAN, AND SOUTH KOREA	520
10-2017	Sebastian Till Braun Nadja Dwenger	THE LOCAL ENVIRONMENT SHAPES REFUGEE INTEGRATION: EVIDENCE FROM POST-WAR GERMANY	INEPA
11-2017	Vadim Kufenko Klaus Prettner Vincent Geloso	DIVERGENCE, CONVERGENCE, AND THE HISTORY-AUGMENTED SOLOW MODEL	INEPA
12-2017	Frank M. Fossen Ray Rees Davud Rostam-Afschar Viktor Steiner	HOW DO ENTREPRENEURIAL PORTFOLIOS RESPOND TO INCOME TAXATION?	520
13-2017	Steffen Otterbach Michael Rogan	SPATIAL DIFFERENCES IN STUNTING AND HOUSEHOLD AGRICULTURAL PRODUCTION IN SOUTH AFRICA: (RE-) EXAMINING THE LINKS USING NATIONAL PANEL SURVEY DATA	INEPA
14-2017	Carolina Castagnetti Luisa Rosti Marina Töpfer	THE CONVERGENCE OF THE GENDER PAY GAP – AN ALTERNATIVE ESTIMATION APPROACH	INEPA

No.	Author	Title	Inst
15-2017	Andreas Hecht	ON THE DETERMINANTS OF SPECULATION – A CASE FOR EXTENDED DISCLOSURES IN CORPORATE RISK MANAGEMENT	510
16-2017	Mareike Schoop D. Marc Kilgour (Editors)	PROCEEDINGS OF THE 17 TH INTERNATIONAL CONFERENCE ON GROUP DECISION AND NEGOTIATION	NegoTrans
17-2017	Mareike Schoop D. Marc Kilgour (Editors)	DOCTORAL CONSORTIUM OF THE 17 TH INTERNATIONAL CONFERENCE ON GROUP DECISION AND NEGOTIATION	NegoTrans
18-2017	Sibylle Lehmann-Hasemeyer Fabian Wahl	SAVING BANKS AND THE INDUSTRIAL REVOLUTION IN PRUSSIA SUPPORTING REGIONAL DEVELOPMENT WITH PUBLIC FINANCIAL INSTITUTIONS	520
19-2017	Stephanie Glaser	A REVIEW OF SPATIAL ECONOMETRIC MODELS FOR COUNT DATA	520
20-2017	Dario Cords	ENDOGENOUS TECHNOLOGY, MATCHING, AND LABOUR UNIONS: DOES LOW-SKILLED IMMIGRATION AFFECT THE TECHNOLOGICAL ALIGNMENT OF THE HOST COUNTRY?	INEPA
21-2017	Micha Kaiser Jan M. Bauer	PRESCHOOL CHILD CARE AND CHILD WELL- BEING IN GERMANY: DOES THE MIGRANT EXPERIENCE DIFFER?	INEPA
22-2017	Thilo R. Huning Fabian Wahl	LORD OF THE LEMONS: ORIGIN AND DYNAMICS OF STATE CAPACITY	520
23-2017	Matthias Busse Ceren Erdogan Henning Mühlen	STRUCTURAL TRANSFORMATION AND ITS RELEVANCE FOR ECONOMIC GROWTH IN SUB- SHARAN AFRICA	INEPA
24-2017	Sibylle Lehmann-Hasemeyer Alexander Opitz	THE VALUE OF POLITICAL CONNECTIONS IN THE FIRST GERMAN DEMOCRACY – EVIDENCE FROM THE BERLIN STOCK EXCHANGE	520
25-2017	Samuel Mburu Micha Kaiser Alfonso Sousa-Poza	LIFESTOCK ASSET DYNAMICS AMONG PASTORALISTS IN NORTHERN KENYA	INEPA

FZID Discussion Papers (published 2009-2014)

Competence Centers

IK	Innovation and Knowledge
ICT	Information Systems and Communication Systems
CRFM	Corporate Finance and Risk Management
HCM	Health Care Management
СМ	Communication Management
MM	Marketing Management
ECO	Economics

Download FZID Discussion Papers from our homepage: https://wiso.uni-hohenheim.de/archiv_fzid_papers

Nr.	Autor	Titel	CC
01-2009	Julian P. Christ	NEW ECONOMIC GEOGRAPHY RELOADED: Localized Knowledge Spillovers and the Geography of Innovation	IK
02-2009	André P. Slowak	MARKET FIELD STRUCTURE & DYNAMICS IN INDUSTRIAL AUTOMATION	IK
03-2009	Pier Paolo Saviotti, Andreas Pyka	GENERALIZED BARRIERS TO ENTRY AND ECONOMIC DEVELOPMENT	IK
04-2009	Uwe Focht, Andreas Richter and Jörg Schiller	INTERMEDIATION AND MATCHING IN INSURANCE MARKETS	HCM
05-2009	Julian P. Christ, André P. Slowak	WHY BLU-RAY VS. HD-DVD IS NOT VHS VS. BETAMAX: THE CO-EVOLUTION OF STANDARD-SETTING CONSORTIA	IK
06-2009	Gabriel Felbermayr, Mario Larch and Wolfgang Lechthaler	UNEMPLOYMENT IN AN INTERDEPENDENT WORLD	ECO
07-2009	Steffen Otterbach	MISMATCHES BETWEEN ACTUAL AND PREFERRED WORK TIME: Empirical Evidence of Hours Constraints in 21 Countries	HCM
08-2009	Sven Wydra	PRODUCTION AND EMPLOYMENT IMPACTS OF NEW TECHNOLOGIES – ANALYSIS FOR BIOTECHNOLOGY	IK
09-2009	Ralf Richter, Jochen Streb	CATCHING-UP AND FALLING BEHIND KNOWLEDGE SPILLOVER FROM AMERICAN TO GERMAN MACHINE TOOL MAKERS	IK

Nr.	Autor	Titel	CC
10-2010	Rahel Aichele, Gabriel Felbermayr	KYOTO AND THE CARBON CONTENT OF TRADE	ECO
11-2010	David E. Bloom, Alfonso Sousa-Poza	ECONOMIC CONSEQUENCES OF LOW FERTILITY IN EUROPE	HCM
12-2010	Michael Ahlheim, Oliver Frör	DRINKING AND PROTECTING – A MARKET APPROACH TO THE PRESERVATION OF CORK OAK LANDSCAPES	ECO
13-2010	Michael Ahlheim, Oliver Frör, Antonia Heinke, Nguyen Minh Duc, and Pham Van Dinh	LABOUR AS A UTILITY MEASURE IN CONTINGENT VALUATION STUDIES – HOW GOOD IS IT REALLY?	ECO
14-2010	Julian P. Christ	THE GEOGRAPHY AND CO-LOCATION OF EUROPEAN TECHNOLOGY-SPECIFIC CO-INVENTORSHIP NETWORKS	IK
15-2010	Harald Degner	WINDOWS OF TECHNOLOGICAL OPPORTUNITY DO TECHNOLOGICAL BOOMS INFLUENCE THE RELATIONSHIP BETWEEN FIRM SIZE AND INNOVATIVENESS?	IK
16-2010	Tobias A. Jopp	THE WELFARE STATE EVOLVES: GERMAN KNAPPSCHAFTEN, 1854-1923	HCM
17-2010	Stefan Kirn (Ed.)	PROCESS OF CHANGE IN ORGANISATIONS THROUGH eHEALTH	ICT
18-2010	Jörg Schiller	ÖKONOMISCHE ASPEKTE DER ENTLOHNUNG UND REGULIERUNG UNABHÄNGIGER VERSICHERUNGSVERMITTLER	HCM
19-2010	Frauke Lammers, Jörg Schiller	CONTRACT DESIGN AND INSURANCE FRAUD: AN EXPERIMENTAL INVESTIGATION	НСМ
20-2010	Martyna Marczak, Thomas Beissinger	REAL WAGES AND THE BUSINESS CYCLE IN GERMANY	ECO
21-2010	Harald Degner, Jochen Streb	FOREIGN PATENTING IN GERMANY, 1877-1932	IK
22-2010	Heiko Stüber, Thomas Beissinger	DOES DOWNWARD NOMINAL WAGE RIGIDITY DAMPEN WAGE INCREASES?	ECO
23-2010	Mark Spoerer, Jochen Streb	GUNS AND BUTTER – BUT NO MARGARINE: THE IMPACT OF NAZI ECONOMIC POLICIES ON GERMAN FOOD CONSUMPTION, 1933-38	ECO

Nr.	Autor	Titel	CC
24-2011	Dhammika Dharmapala, Nadine Riedel	EARNINGS SHOCKS AND TAX-MOTIVATED INCOME-SHIFTING: EVIDENCE FROM EUROPEAN MULTINATIONALS	ECO
25-2011	Michael Schuele, Stefan Kirn	QUALITATIVES, RÄUMLICHES SCHLIEßEN ZUR KOLLISIONSERKENNUNG UND KOLLISIONSVERMEIDUNG AUTONOMER BDI-AGENTEN	ICT
26-2011	Marcus Müller, Guillaume Stern, Ansger Jacob and Stefan Kirn	VERHALTENSMODELLE FÜR SOFTWAREAGENTEN IM PUBLIC GOODS GAME	ICT
27-2011	Monnet Benoit, Patrick Gbakoua and Alfonso Sousa-Poza	ENGEL CURVES, SPATIAL VARIATION IN PRICES AND DEMAND FOR COMMODITIES IN CÔTE D'IVOIRE	ECO
28-2011	Nadine Riedel, Hannah Schildberg- Hörisch	ASYMMETRIC OBLIGATIONS	ECO
29-2011	Nicole Waidlein	CAUSES OF PERSISTENT PRODUCTIVITY DIFFERENCES IN THE WEST GERMAN STATES IN THE PERIOD FROM 1950 TO 1990	IK
30-2011	Dominik Hartmann, Atilio Arata	MEASURING SOCIAL CAPITAL AND INNOVATION IN POOR AGRICULTURAL COMMUNITIES. THE CASE OF CHÁPARRA - PERU	IK
31-2011	Peter Spahn	DIE WÄHRUNGSKRISENUNION DIE EURO-VERSCHULDUNG DER NATIONALSTAATEN ALS SCHWACHSTELLE DER EWU	ECO
32-2011	Fabian Wahl	DIE ENTWICKLUNG DES LEBENSSTANDARDS IM DRITTEN REICH – EINE GLÜCKSÖKONOMISCHE PERSPEKTIVE	ECO
33-2011	Giorgio Triulzi, Ramon Scholz and Andreas Pyka	R&D AND KNOWLEDGE DYNAMICS IN UNIVERSITY-INDUSTRY RELATIONSHIPS IN BIOTECH AND PHARMACEUTICALS: AN AGENT-BASED MODEL	IK
34-2011	Claus D. Müller- Hengstenberg, Stefan Kirn	ANWENDUNG DES ÖFFENTLICHEN VERGABERECHTS AUF MODERNE IT SOFTWAREENTWICKLUNGSVERFAHREN	ICT
35-2011	Andreas Pyka	AVOIDING EVOLUTIONARY INEFFICIENCIES IN INNOVATION NETWORKS	IK
36-2011	David Bell, Steffen Otterbach and Alfonso Sousa-Poza	WORK HOURS CONSTRAINTS AND HEALTH	НСМ
37-2011	Lukas Scheffknecht, Felix Geiger	A BEHAVIORAL MACROECONOMIC MODEL WITH ENDOGENOUS BOOM-BUST CYCLES AND LEVERAGE DYNAMICS	ECO
38-2011	Yin Krogmann, Ulrich Schwalbe	INTER-FIRM R&D NETWORKS IN THE GLOBAL PHARMACEUTICAL BIOTECHNOLOGY INDUSTRY DURING 1985–1998: A CONCEPTUAL AND EMPIRICAL ANALYSIS	IK

Nr.	Autor	Titel	CC
39-2011	Michael Ahlheim, Tobias Börger and Oliver Frör	RESPONDENT INCENTIVES IN CONTINGENT VALUATION: THE ROLE OF RECIPROCITY	ECO
40-2011	Tobias Börger	A DIRECT TEST OF SOCIALLY DESIRABLE RESPONDING IN CONTINGENT VALUATION INTERVIEWS	ECO
41-2011	Ralf Rukwid, Julian P. Christ	QUANTITATIVE CLUSTERIDENTIFIKATION AUF EBENE DER DEUTSCHEN STADT- UND LANDKREISE (1999-2008)	IK

Nr.	Autor	Titel	CC
42-2012	Benjamin Schön, Andreas Pyka	A TAXONOMY OF INNOVATION NETWORKS	IK
43-2012	Dirk Foremny, Nadine Riedel	BUSINESS TAXES AND THE ELECTORAL CYCLE	ECO
44-2012	Gisela Di Meglio, Andreas Pyka and Luis Rubalcaba	VARIETIES OF SERVICE ECONOMIES IN EUROPE	IK
45-2012	Ralf Rukwid, Julian P. Christ	INNOVATIONSPOTENTIALE IN BADEN-WÜRTTEMBERG: PRODUKTIONSCLUSTER IM BEREICH "METALL, ELEKTRO, IKT" UND REGIONALE VERFÜGBARKEIT AKADEMISCHER FACHKRÄFTE IN DEN MINT-FÄCHERN	IK
46-2012	Julian P. Christ, Ralf Rukwid	INNOVATIONSPOTENTIALE IN BADEN-WÜRTTEMBERG: BRANCHENSPEZIFISCHE FORSCHUNGS- UND ENTWICKLUNGSAKTIVITÄT, REGIONALES PATENTAUFKOMMEN UND BESCHÄFTIGUNGSSTRUKTUR	ΙK
47-2012	Oliver Sauter	ASSESSING UNCERTAINTY IN EUROPE AND THE US - IS THERE A COMMON FACTOR?	ECO
48-2012	Dominik Hartmann	SEN MEETS SCHUMPETER. INTRODUCING STRUCTURAL AND DYNAMIC ELEMENTS INTO THE HUMAN CAPABILITY APPROACH	IK
49-2012	Harold Paredes- Frigolett, Andreas Pyka	DISTAL EMBEDDING AS A TECHNOLOGY INNOVATION NETWORK FORMATION STRATEGY	IK
50-2012	Martyna Marczak, Víctor Gómez	CYCLICALITY OF REAL WAGES IN THE USA AND GERMANY: NEW INSIGHTS FROM WAVELET ANALYSIS	ECO
51-2012	André P. Slowak	DIE DURCHSETZUNG VON SCHNITTSTELLEN IN DER STANDARDSETZUNG: FALLBEISPIEL LADESYSTEM ELEKTROMOBILITÄT	IK
52-2012	Fabian Wahl	WHY IT MATTERS WHAT PEOPLE THINK - BELIEFS, LEGAL ORIGINS AND THE DEEP ROOTS OF TRUST	ECO
53-2012	Dominik Hartmann, Micha Kaiser	STATISTISCHER ÜBERBLICK DER TÜRKISCHEN MIGRATION IN BADEN-WÜRTTEMBERG UND DEUTSCHLAND	IK
54-2012	Dominik Hartmann, Andreas Pyka, Seda Aydin, Lena Klauß, Fabian Stahl, Ali Santircioglu, Silvia Oberegelsbacher, Sheida Rashidi, Gaye Onan and Suna Erginkoç	IDENTIFIZIERUNG UND ANALYSE DEUTSCH-TÜRKISCHER INNOVATIONSNETZWERKE. ERSTE ERGEBNISSE DES TGIN- PROJEKTES	ΙK
55-2012	Michael Ahlheim, Tobias Börger and Oliver Frör	THE ECOLOGICAL PRICE OF GETTING RICH IN A GREEN DESERT: A CONTINGENT VALUATION STUDY IN RURAL SOUTHWEST CHINA	ECO

Nr.	Autor	Titel	CC
56-2012	Matthias Strifler Thomas Beissinger	FAIRNESS CONSIDERATIONS IN LABOR UNION WAGE SETTING – A THEORETICAL ANALYSIS	ECO
57-2012	Peter Spahn	INTEGRATION DURCH WÄHRUNGSUNION? DER FALL DER EURO-ZONE	ECO
58-2012	Sibylle H. Lehmann	TAKING FIRMS TO THE STOCK MARKET: IPOS AND THE IMPORTANCE OF LARGE BANKS IN IMPERIAL GERMANY 1896-1913	ECO
59-2012	Sibylle H. Lehmann, Philipp Hauber and Alexander Opitz	POLITICAL RIGHTS, TAXATION, AND FIRM VALUATION – EVIDENCE FROM SAXONY AROUND 1900	ECO
60-2012	Martyna Marczak, Víctor Gómez	SPECTRAN, A SET OF MATLAB PROGRAMS FOR SPECTRAL ANALYSIS	ECO
61-2012	Theresa Lohse, Nadine Riedel	THE IMPACT OF TRANSFER PRICING REGULATIONS ON PROFIT SHIFTING WITHIN EUROPEAN MULTINATIONALS	ECO

Nr.	Autor	Titel	CC
62-2013	Heiko Stüber	REAL WAGE CYCLICALITY OF NEWLY HIRED WORKERS	ECO
63-2013	David E. Bloom, Alfonso Sousa-Poza	AGEING AND PRODUCTIVITY	НСМ
64-2013	Martyna Marczak, Víctor Gómez	MONTHLY US BUSINESS CYCLE INDICATORS: A NEW MULTIVARIATE APPROACH BASED ON A BAND-PASS FILTER	ECO
65-2013	Dominik Hartmann, Andreas Pyka	INNOVATION, ECONOMIC DIVERSIFICATION AND HUMAN DEVELOPMENT	IK
66-2013	Christof Ernst, Katharina Richter and Nadine Riedel	CORPORATE TAXATION AND THE QUALITY OF RESEARCH AND DEVELOPMENT	ECO
67-2013	Michael Ahlheim, Oliver Frör, Jiang Tong, Luo Jing and Sonna Pelz	NONUSE VALUES OF CLIMATE POLICY - AN EMPIRICAL STUDY IN XINJIANG AND BEIJING	ECO
68-2013	Michael Ahlheim, Friedrich Schneider	CONSIDERING HOUSEHOLD SIZE IN CONTINGENT VALUATION STUDIES	ECO
69-2013	Fabio Bertoni, Tereza Tykvová	WHICH FORM OF VENTURE CAPITAL IS MOST SUPPORTIVE OF INNOVATION? EVIDENCE FROM EUROPEAN BIOTECHNOLOGY COMPANIES	CFRM
70-2013	Tobias Buchmann, Andreas Pyka	THE EVOLUTION OF INNOVATION NETWORKS: THE CASE OF A GERMAN AUTOMOTIVE NETWORK	IK
71-2013	B. Vermeulen, A. Pyka, J. A. La Poutré and A. G. de Kok	CAPABILITY-BASED GOVERNANCE PATTERNS OVER THE PRODUCT LIFE-CYCLE	IK
72-2013	Beatriz Fabiola López Ulloa, Valerie Møller and Alfonso Sousa- Poza	HOW DOES SUBJECTIVE WELL-BEING EVOLVE WITH AGE? A LITERATURE REVIEW	НСМ
73-2013	Wencke Gwozdz, Alfonso Sousa-Poza, Lucia A. Reisch, Wolfgang Ahrens, Stefaan De Henauw, Gabriele Eiben, Juan M. Fernández-Alvira, Charalampos Hadjigeorgiou, Eva Kovács, Fabio Lauria, Toomas Veidebaum, Garrath Williams, Karin Bammann	MATERNAL EMPLOYMENT AND CHILDHOOD OBESITY – A EUROPEAN PERSPECTIVE	HCM

Nr.	Autor	Titel	CC
74-2013	Andreas Haas, Annette Hofmann	RISIKEN AUS CLOUD-COMPUTING-SERVICES: FRAGEN DES RISIKOMANAGEMENTS UND ASPEKTE DER VERSICHERBARKEIT	HCM
75-2013	Yin Krogmann, Nadine Riedel and Ulrich Schwalbe	INTER-FIRM R&D NETWORKS IN PHARMACEUTICAL BIOTECHNOLOGY: WHAT DETERMINES FIRM'S CENTRALITY-BASED PARTNERING CAPABILITY?	ECO, IK
76-2013	Peter Spahn	MACROECONOMIC STABILISATION AND BANK LENDING: A SIMPLE WORKHORSE MODEL	ECO
77-2013	Sheida Rashidi, Andreas Pyka	MIGRATION AND INNOVATION – A SURVEY	IK
78-2013	Benjamin Schön, Andreas Pyka	THE SUCCESS FACTORS OF TECHNOLOGY-SOURCING THROUGH MERGERS & ACQUISITIONS – AN INTUITIVE META- ANALYSIS	IK
79-2013	Irene Prostolupow, Andreas Pyka and Barbara Heller-Schuh	TURKISH-GERMAN INNOVATION NETWORKS IN THE EUROPEAN RESEARCH LANDSCAPE	IK
80-2013	Eva Schlenker, Kai D. Schmid	CAPITAL INCOME SHARES AND INCOME INEQUALITY IN THE EUROPEAN UNION	ECO
81-2013	Michael Ahlheim, Tobias Börger and Oliver Frör	THE INFLUENCE OF ETHNICITY AND CULTURE ON THE VALUATION OF ENVIRONMENTAL IMPROVEMENTS – RESULTS FROM A CVM STUDY IN SOUTHWEST CHINA –	ECO
82-2013	Fabian Wahl	DOES MEDIEVAL TRADE STILL MATTER? HISTORICAL TRADE CENTERS, AGGLOMERATION AND CONTEMPORARY ECONOMIC DEVELOPMENT	ECO
83-2013	Peter Spahn	SUBPRIME AND EURO CRISIS: SHOULD WE BLAME THE ECONOMISTS?	ECO
84-2013	Daniel Guffarth, Michael J. Barber	THE EUROPEAN AEROSPACE R&D COLLABORATION NETWORK	IK
85-2013	Athanasios Saitis	KARTELLBEKÄMPFUNG UND INTERNE KARTELLSTRUKTUREN: EIN NETZWERKTHEORETISCHER ANSATZ	IK

Nr.	Autor	Titel	CC
86-2014	Stefan Kirn, Claus D. Müller-Hengstenberg	INTELLIGENTE (SOFTWARE-)AGENTEN: EINE NEUE HERAUSFORDERUNG FÜR DIE GESELLSCHAFT UND UNSER RECHTSSYSTEM?	ICT
87-2014	Peng Nie, Alfonso Sousa-Poza	MATERNAL EMPLOYMENT AND CHILDHOOD OBESITY IN CHINA: EVIDENCE FROM THE CHINA HEALTH AND NUTRITION SURVEY	HCM
88-2014	Steffen Otterbach, Alfonso Sousa-Poza	JOB INSECURITY, EMPLOYABILITY, AND HEALTH: AN ANALYSIS FOR GERMANY ACROSS GENERATIONS	HCM
89-2014	Carsten Burhop, Sibylle H. Lehmann- Hasemeyer	THE GEOGRAPHY OF STOCK EXCHANGES IN IMPERIAL GERMANY	ECO
90-2014	Martyna Marczak, Tommaso Proietti	OUTLIER DETECTION IN STRUCTURAL TIME SERIES MODELS: THE INDICATOR SATURATION APPROACH	ECO
91-2014	Sophie Urmetzer, Andreas Pyka	VARIETIES OF KNOWLEDGE-BASED BIOECONOMIES	IK
92-2014	Bogang Jun, Joongho Lee	THE TRADEOFF BETWEEN FERTILITY AND EDUCATION: EVIDENCE FROM THE KOREAN DEVELOPMENT PATH	IK
93-2014	Bogang Jun, Tai-Yoo Kim	NON-FINANCIAL HURDLES FOR HUMAN CAPITAL ACCUMULATION: LANDOWNERSHIP IN KOREA UNDER JAPANESE RULE	IK
94-2014	Michael Ahlheim, Oliver Frör, Gerhard Langenberger and Sonna Pelz	CHINESE URBANITES AND THE PRESERVATION OF RARE SPECIES IN REMOTE PARTS OF THE COUNTRY – THE EXAMPLE OF EAGLEWOOD	ECO
95-2014	Harold Paredes- Frigolett, Andreas Pyka, Javier Pereira and Luiz Flávio Autran Monteiro Gomes	RANKING THE PERFORMANCE OF NATIONAL INNOVATION SYSTEMS IN THE IBERIAN PENINSULA AND LATIN AMERICA FROM A NEO-SCHUMPETERIAN ECONOMICS PERSPECTIVE	ΙK
96-2014	Daniel Guffarth, Michael J. Barber	NETWORK EVOLUTION, SUCCESS, AND REGIONAL DEVELOPMENT IN THE EUROPEAN AEROSPACE INDUSTRY	IK

University of Hohenheim Dean's Office of the Faculty of Business, Economics and Social Sciences Palace Hohenheim 1 B 70593 Stuttgart | Germany Fon +49 (0)711 459 22488 Fax +49 (0)711 459 22785 E-mail wiso@uni-hohenheim.de Web www.wiso.uni-hohenheim.de