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Abstract

We propose forecast encompassing tests for the Expected Shortfall (ES) jointly
with the Value at Risk (VaR) based on flexible link (or combination) functions.
Our setup allows testing encompassing for convex forecast combinations and for
link functions which preclude crossings of the combined VaR and ES forecasts. As
the tests based on these link functions involve parameters which are on the boundary
of the parameter space under the null hypothesis, we derive and base our tests on
nonstandard asymptotic theory on the boundary. Our simulation study shows that
the encompassing tests based on our new link functions outperform tests based on
unrestricted linear link functions for one-step and multi-step forecasts. We further
illustrate the potential of the proposed tests in a real data analysis for forecasting
VaR and ES of the S&P 500 index.
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1 Introduction

For nearly two decades, financial institutions and regulators have advocated Value at Risk

(VaR) as the main tool for risk management and capital allocation. Owing to a number

of weaknesses, including the failure of capturing (extreme) tail risks and hence discourag-

ing risk diversification (Artzner et al., 1999; Acerbi and Tasche, 2002; Tasche, 2002), the

Basel Committee on Banking Supervision (BCBS) has recently adopted Expected Short-

fall (ES), complementing and in parts substituting VaR as the fundamental measure for

market risk (Basel Committee, 2013, 2016, 2017, 2019).

The ES at level α ∈ (0, 1) is defined as the expected return beyond the α-quantile and

it is widely used as a coherent measure of tail risks (Artzner et al., 1999; Tasche, 2002).

Nonetheless, its inherent deficiency is that the ES is not elicitable on its own, meaning that

the ES cannot be obtained as the unique minimizer of the expectation of a loss (scoring)

function, see e.g., Gneiting (2011). However, Fissler and Ziegel (2016) show that the VaR

and ES are jointly elicitable (or 2-elicitable). This joint elicitability property directly

hints towards evaluating the ES jointly with the VaR in a unified framework (Fissler

et al., 2016), as in the present study concerning forecast encompassing tests.

Forecast encompassing of two competing forecasts tests whether one forecast alone

performs not worse than any forecast combination, stemming from some parametric com-

bination formula, also denoted by link functions in this article. If this holds, the rival

forecast contains no additionally useful information relative to the first forecast (Hendry

and Richard, 1982; Mizon and Richard, 1986). This makes forecast encompassing tests

an attractive tool for the empirical comparison of competing forecasts, especially when

focusing on efficiency gains stemming from forecast combinations.1 As meaningful mea-

sures of forecast performance are based on strictly consistent loss functions (Gneiting,

2011), this forcefully illustrates the importance of the existence of such loss functions

for testing forecast encompassing. Hence, we build our encompassing tests on joint loss

functions for the VaR and ES (Fissler and Ziegel, 2016), and on recently developed joint

semiparametric VaR and ES models (Patton et al., 2019; Dimitriadis and Bayer, 2019;

Taylor, 2019; Barendse, 2020).

As the main methodological contribution of this paper, we introduce encompassing

tests for the ES jointly with the VaR based on flexible link functions or combination

formulas, which allow for several important specifications that go beyond those of ex-

isting encompassing tests of e.g. Giacomini and Komunjer (2005) and Dimitriadis and

Schnaitmann (2020). While linear forecast combination methods with unrestricted pa-

1For recent empirical applications of forecast encompassing tests, see e.g., Taylor (2005); Busetti and
Marcucci (2013); Fuertes and Olmo (2013); Costantini et al. (2017); Liu (2017); Zhao et al. (2017); Tsiotas
(2018); Clements and Reade (2020); You and Liu (2020) among others.
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rameters are the most prominent class of link functions used for encompassing tests,2

more flexible approaches are especially important for joint tests of the VaR and ES: First,

unrestricted linear link functions regularly result in VaR and ES crossings, i.e. days where

the optimally combined ES forecast is larger than the VaR forecast, which immediately

contradicts their definitions (Taylor, 2020). To this end, we propose the no-crossing link

functions which impede such crossings. Second, convex forecast combinations present an

attractive alternative as their structure can stabilize the forecast performance and reduce

the estimation noise (Timmermann, 2006; Hansen, 2008; Bayer, 2018), which is particu-

larly important for the case of semiparametric models for the VaR and ES with extreme

probability levels (Dimitriadis and Bayer, 2019).

The link function specifications considered in this article imply that certain model

parameters are on the boundary of the parameter space under the null hypothesis. This

boundary issue is exemplified by encompassing tests for convex forecast combinations,

which entails testing whether the convex combination parameter is one (or zero). Under

the null hypothesis, this parameter lies on the boundary of the admissible parameter

space, i.e., the unit interval. Hence, we derive novel and nonstandard asymptotic theory

for the model parameters and the resulting Wald test statistics for semiparametric models

for the VaR and ES which allows some (or all) of the true model parameters to be on the

boundary of the parameter space. For this, we follow the approach of Andrews (1999)

and Andrews (2001), where the proofs use empirical process methods of Andrews (1994)

and Doukhan et al. (1995). To render our tests practically feasible, we draw critical

values from the resulting nonstandard asymptotic distributions of the Wald test statistics

obtained from simulations involving the solution of quadratic programming problems.

The proposed encompassing tests allow for testing one-step ahead, multi-step ahead

and multi-step aggregate forecasts, where the consideration of multi-step forecasts requires

the application of a VaR and ES specific adaption of the HAC (Heteroskedasticity and

Autocorrelation Consistent) estimator of Newey and West (1987) and Andrews (1991).

The examination of multi-step (aggregate) forecasts is particularly relevant for the risk

measures VaR and ES due to the explicit calls for 10-day aggregate VaR and ES forecasts

of the Basel Committee (2016, 2017, 2019, 2020). Furthermore, this goes beyond many

recent papers concerning forecast evaluation procedures for the VaR and ES, which mainly

focus on one-step ahead forecasts.3

Our simulations show that the encompassing tests for the VaR and ES based on our

new link functions and on inference on the boundary exhibit accurate empirical sizes and

2see e.g., Hendry and Richard (1982); Mizon and Richard (1986); Diebold (1989); Giacomini and
Komunjer (2005); Clements and Harvey (2009, 2010); Dimitriadis and Schnaitmann (2020).

3see e.g. Kratz et al. (2018); Costanzino and Curran (2018); Bayer and Dimitriadis (2020); Couperier
and Leymarie (2019); Patton et al. (2019); Dimitriadis and Schnaitmann (2020).
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good power properties. In particular, we find that these test specifications outperform

classical tests based on unrestricted linear link functions for the VaR and ES of Dimitriadis

and Schnaitmann (2020) throughout all considered simulation designs and for all, one-step

ahead, multi-step ahead, and multi-step aggregate forecasts. However, we find that long

forecast horizons (e.g., 10 days) paired with short evaluation periods of less than 1000

trading days result in unreliable test decisions. This simulation result sheds a critical light

on the recent evaluation methods based on relatively short evaluation periods proposed

by the Basel Committee (2016, 2017, 2019, 2020).

We empirically illustrate the usefulness of the VaR and ES encompassing tests based

on convex link functions by comparing one-day ahead, and 10-day ahead and aggregate

VaR and ES forecasts for daily S&P 500 index returns. We estimate eleven risk models

in a rolling forecast scheme, including several GARCH specifications and the ES-specific

semiparametric models of Taylor (2019) and Patton et al. (2019). For the evaluation

period from July 2008 to June 2020, we find that the new tests assign much higher op-

timal weights to models specified with asymmetric volatilities, asymmetric and fat-tailed

residual distributions and dynamic higher moments, especially for multi-step forecasts.

Our paper is closely related to the recent work of Dimitriadis and Schnaitmann (2020),

but differs in the following ways. First, our proposed encompassing tests extend the ones of

Dimitriadis and Schnaitmann (2020) with more flexible link functions by allowing the true

parameters under the null to be on the boundary of the parameter space. Second, while the

theoretical contribution of Dimitriadis and Schnaitmann (2020) focuses on the inclusion

of misspecified models for encompassing tests, we establish inference on the boundary of

the parameter space. Third, while our considered link functions allow for theoretically

appealing specifications, they also exhibit clearly superior empirical properties in a wide

range of simulations. Fourth, following the recent regulations of the Basel Committee

(2019, 2020), we consider multi-step ahead and aggregate VaR and ES forecasts in the

simulations and the empirical application of this article.

The remainder of the paper is organized as follows. Section 2 proposes the joint

encompassing tests based on flexible link functions and develops asymptotic theory for

the joint VaR and ES models for parameters on the boundary of the parameter space.

Section 3 presents simulations for the encompassing tests and Section 4 applies the tests

to VaR and ES forecasts for the S&P 500 index. Section 5 concludes. The proofs are given

in Appendix A, and a supplementary material document contains additional material for

the paper, where references starting with S. refer to the supplement.
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2 Theory

2.1 Setup and Notation

We follow the general setup of Giacomini and Komunjer (2005) and Dimitriadis and

Schnaitmann (2020) while further allowing for multi-step forecasts. For this, we con-

sider a stationary stochastic process Z =
{
Zt : Ω→ Rl̃+1, t = 1, . . . , R, l̃ ∈ N, R ∈ N

}
,

which is defined on some common and complete probability space (Ω,F ,P), where F =

{Ft, t = 1, . . . , R} and Ft = σ {Zs, s ≤ t}. We partition the stochastic process as Zt =

(Yt, Xt), where Yt : Ω → R is an absolutely continuous random variable of interest and

Xt : Ω→ Rl̃ is a vector of explanatory variables. For some fixed forecast horizon h ∈ N,

we denote the conditional distribution of Yt+h given the information set Ft by Ft. Accord-

ingly, Et, Vart and ht denote the expectation, variance and density corresponding to Ft.

The conditional VaR of Yt+h given Ft at probability level α ∈ (0, 1) is formally defined as

VaRt,α(Yt+h) = F−1
t (α) = inf{z ∈ R : Ft(z) ≥ α}, (2.1)

and given that Ft is continuous at its α-quantile, the conditional ES of Yt+h given Ft at

level α ∈ (0, 1) is defined by

ESt,α(Yt+h) = Et
[
Yt+h | Yt+h ≤ VaRt,α(Yt+h)

]
. (2.2)

In order to allow for forecast evaluation of multi-step (ahead and aggregate) forecasts

with horizon h ∈ N in an out-of-sample fashion, we split R = S + T + h − 1, where

S ∈ N denotes the length of the in-sample and T ∈ N of the out-of sample window. In

detail, for all t ∈ N, such that S ≤ t ≤ S + T − 1, we generate h-step ahead VaR and

ES forecasts for the random variables Yt+h (i.e. for the sequence (YS+h, . . . , YS+T+h−1))

based on the previous S data points. For convenience of the notation, we define the set

T := {t ∈ N : S ≤ t ≤ S + T − 1} corresponding to the time points the forecasts are

issued for the out-of-sample period.

We further denote the competing, Ft-measurable, h-step forecasts for the VaR and ES

by q̂j,t and êj,t, for j = 1, 2. Following Giacomini and Komunjer (2005), we assume that

these are generated through a function f
(
γt,S, Zt, Zt−1, . . .

)
, which is fixed over time. For

this, γt,S denotes the (estimated or fixed) model parameters at time t, or alternatively

the semi- or non-parametric estimator used in the construction of the forecasts, (possibly)

estimated by data from the in-sample period of length S. This construction allows for

forecasting schemes with fixed (or no) parameters, forecasting schemes with model pa-

rameters γt,S that are estimated only once, and rolling window forecasting schemes where

the parameters γt,S are re-estimated in each step (Giacomini and Komunjer, 2005). In our
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testing approach, we focus on evaluation of the entire forecasting method as e.g. in Giaco-

mini and Komunjer (2005) and Giacomini and White (2006), instead of on a forecasting

model, as e.g. in West (1996, 2001). The stacked forecasts are denoted by q̂t = (q̂1,t, q̂2,t)

for the VaR, and by êt = (ê1,t, ê2,t) for the ES.4 In our notation of the forecasts, we stress

the dependence on t, the time-point they are issued, while suppressing the dependence on

the forecast horizon h as it is treated as fixed.

Let rt denote financial log-returns for day t. Then, our theoretical setup allows for the

treatment of classical multi-step (h-step) ahead forecasts, but also for h-step aggregate

forecasts in the sense of an aggregated return over h days, such as the 10-day aggregate

VaR and ES forecasts explicitly stated in the regulatory framework of the Basel Committee

(2019, 2020). For classical h-step ahead forecasts, we use Yt+h = rt+h, while for h-step

aggregate forecasts we choose Yt+h =
∑h

s=1 rt+s.

In the following exposition, all vectors refer to column vectors. For splitting of sub-

vectors, we often abuse notation and write θ = (θ1, θ2) instead of θ = (θ>1 , θ
>
2 )>. The

operator ∇ denotes the derivative with respect to θ. All limits below are taken “as

T →∞” unless stated otherwise and
P−→ and

d−→ denote convergence in probability and

distribution respectively. Let := denote an equality “by definition”. Furthermore, let R+

and R− denote the non-negative and non-positive real half-lines respectively and we define

RC = {z ∈ R : |z| ≤ C} to be a sufficiently large compact subset of the real numbers (for

some C ∈ R+ large enough).

2.2 Joint Encompassing Tests for VaR and ES Forecasts

For the introduction of the joint encompassing tests for VaR and ES forecasts, we fol-

low Dimitriadis and Schnaitmann (2020) and define the flexible link (or combination)

functions

gq : Q× E×Θ→ R, (q̂t, êt, θ) 7→ gq(q̂t, êt, θ), (2.3)

ge : Q× E×Θ→ R, (q̂t, êt, θ) 7→ ge(q̂t, êt, θ), (2.4)

based on some (compact) parameter space Θ ⊂ Rk, where Q and E denote the random

spaces of the VaR and ES forecasts. These link functions represent the parametric, func-

tional forms of the forecast combinations we consider.5 E.g., in the classical case of testing

4A generalization of our framework to test encompassing for multiple competing forecasts (K ≥ 2)
in the sense of Harvey and Newbold (2000) is readily available by generalizing the notation as q̂t =
(q̂1,t, . . . , q̂K,t) and êt = (ê1,t, . . . , êK,t) and by further using suitable specifications for the link functions
and the null hypotheses in the subsequent derivations.

5The link functions can alternatively be interpreted as (semi-) parametric models for the conditional
quantile (VaR) and ES of Ft as in Patton et al. (2019).

6



forecast encompassing, these link functions are linear with (essentially) unrestricted pa-

rameter spaces. For convenience of notation, we henceforth use the short forms

gqt (θ) := gq(q̂t, êt, θ), and get (θ) := ge(q̂t, êt, θ). (2.5)

We further assume that there exists a unique test parameter value θ∗ ∈ Θ such that

gq(q̂t, êt, θ∗) = q̂1,t and ge(q̂t, êt, θ∗) = ê1,t almost surely. This assumption ensures that

the parametric link function allows for the trivial forecast combination of only choosing

the first forecast.6 In the classical case of unrestricted linear link functions, θ∗ often

corresponds to (1, 0) or (0, 1, 0), depending on whether an intercept is included in the

model. We refer to Section 2.3 for details and examples of these link functions.

Gneiting (2011) shows that the ES stand-alone is not elicitable, i.e. there do not exist

suitable (strictly consistent) loss functions, which are a central ingredient for encompassing

tests (Giacomini and Komunjer, 2005; Dimitriadis and Schnaitmann, 2020). Fissler and

Ziegel (2016) overcome this deficiency and show that there exist joint loss functions for

the VaR and ES and further characterize this class subject to mild regularity conditions

by

ρ
(
Y, q, e

)
=
(
1{Y≤q} − α

)
g(q)− 1{Y≤q}g(Y )

+ φ′(e)

(
e− q +

(q − Y )1{Y≤q}
α

)
− φ(e) + a(Y ),

(2.6)

where the function g is twice continuously differentiable and increasing, φ is three times

continuously differentiable, strictly increasing and strictly convex, and a and g are Yt+h-

integrable functions. The most prominent candidate of this class is the zero-homogeneous

loss function (Nolde and Ziegel, 2017), sometimes called the FZ0 loss,

ρFZ0
(
Y, q, e

)
= −1

e

(
e− q +

(q − Y )1{Y≤q}
α

)
+ log(−e), (2.7)

which is obtained by choosing g(z) = 0, a(z) = 0 and φ(z) = − log(−z) in (2.6). We

henceforth often use the short notations ρt(θ) := ρ
(
Yt+h, g

q
t (θ), g

e
t (θ)

)
and ρFZ0

t (θ) :=

ρFZ0
(
Yt+h, g

q
t (θ), g

e
t (θ)

)
.

Using the general class of loss functions in (2.6), we define the true regression (or

6As the encompassing tests in this article are always formulated as forecast (pair) one encompasses
forecast (pair) two, we only assume the existence of θ∗ corresponding to the first (pair) of forecasts.
Testing the inverted encompassing hypothesis that the second pair of forecasts encompasses the first
forecast pair can be carried out by interchanging the forecast pairs. Alternatively, one could assume that
a value θ̃∗ exists such that gq(q̂t, êt, θ̃∗) = q̂2,t and ge(q̂t, êt, θ̃∗) = ê2,t holds almost surely.
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combination) parameter θ0 ∈ Θ by

θ0 := arg min
θ∈Θ

E
[
ρ
(
Yt+h, g

q
t (θ), g

e
t (θ)

)]
, (2.8)

which is independent of t as we assume stationarity of the process Z.7 The strict consis-

tency result of the loss function from Fissler and Ziegel (2016) together with further weak

regularity conditions on the link functions implies that

Q(Yt+h | Ft) = gqt (θ
0) and ES(Yt+h | Ft) = get (θ

0) (2.9)

almost surely, which justifies the notion of the true regression parameter.

We now define joint forecast encompassing for the VaR and ES following Giacomini

and Komunjer (2005) and Dimitriadis and Schnaitmann (2020).

Definition 1 (Joint VaR and ES Forecast Encompassing). We say that the pair(
q̂1,t, ê1,t

)
jointly encompasses

(
q̂2,t, ê2,t

)
at time t with respect to the link functions gq

and ge if and only if

E
[
ρ
(
Yt+h, q̂1,t, ê1,t

)]
= E

[
ρ
(
Yt+1, g

q(q̂t, êt, θ
0), ge(q̂t, êt, θ

0)
)]
, (2.10)

where the loss function ρ is given in (2.6).

This holds if and only if θ0 = θ∗ as we impose uniqueness of the parameter θ∗. The

intuition behind the specification in (2.10) is that the forecasts (q̂1,t, ê1,t) generate the

same expected loss as an optimal forecast combination
(
gq(q̂t, θ

0), ge(êt, θ
0)
)

based on the

optimal combination parameter defined in (2.8). Hence, using the first pair of forecasts

(q̂1,t, ê1,t) is the optimal, but trivial forecast combination. From a different point of view,

this implies that the second pair of forecasts (q̂2,t, ê2,t) does not add any useful information

which is not already contained in (q̂1,t, ê1,t).

If the interest is mainly placed on the performance of the competing ES forecasts,

one can consider the auxiliary ES encompassing test in the spirit of Dimitriadis and

Schnaitmann (2020).8

Definition 2 (Auxiliary ES Forecast Encompassing). We say that the forecast ê1,t

auxiliarily encompasses its rival ê2,t at time t with respect to the link functions gq and ge

7See e.g. Patton et al. (2019), Dimitriadis and Bayer (2019), Bayer and Dimitriadis (2020), Dimitriadis
and Schnaitmann (2020) and Barendse (2020) for details on joint (semi-) parametric models for the VaR
and ES.

8Application of the strict encompassing test of Dimitriadis and Schnaitmann (2020) in the setting of
the present article further requires combining the asymptotic theory under misspecification of Dimitriadis
and Schnaitmann (2020) with the theory of estimation and testing at the boundary of the present article.
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if and only if

E
[
ρ
(
Yt+h, g

q(q̂t, êt, θ
0), ê1,t

)]
= E

[
ρ
(
Yt+1, g

q(q̂t, êt, θ
0), ge(q̂t, êt, θ

0)
)]
, (2.11)

where the loss function ρ is given in (2.6).

Finding testable conditions for the auxiliary test, corresponding to the condition θ0 =

θ∗ for the joint test, has to be done on a case-by-case basis for the link functions under

consideration, see Section 2.3 for further details.

Given a sample of competing forecasts and corresponding realizations, we can test

whether the sequence of joint VaR and ES forecasts (q̂1,t, ê1,t) encompasses the sequence

(q̂2,t, ê2,t) for all t ∈ T (in the out-of-sample period) by estimating the parameters of the

semiparametric models

Yt+h = gqt (θ) + uqt+h, and Yt+h = get (θ) + uet+h, (2.12)

where Qα(uqt+h | Ft) = 0 and ESα(uet+h | Ft) = 0 almost surely for all t ∈ T by using the

M-estimator introduced in Patton et al. (2019) and Dimitriadis and Bayer (2019), and by

testing whether θ∗ = θ0 using a Wald test.

Differently from Dimitriadis and Schnaitmann (2020) and the remaining literature

on testing forecast encompassing, we allow the true, optimal parameter θ0 to be on the

boundary of Θ under the null hypothesis. This facilitates the consideration of several

important link function specifications. E.g., this enables to test encompassing for link

specifications which theoretically prevent crossings of the combined VaR and ES forecasts

in the sense that get (θ) ≤ gqt (θ) almost surely for all t ∈ T (Taylor, 2020). Furthermore, we

can test forecast encompassing based on convex forecast combinations, which stabilizes

the parameter estimation. While the subsequent section focuses mainly on these two

examples, our approach is by no means limited to these link functions.

2.3 The Link Function Specifications

In this section, we introduce three link function specifications which are of interest for

this article, where other link functions can be treated along the lines of this section

by employing an equivalent split of the parameter vector and by formulating the null

hypotheses accordingly. The treatment of asymptotic theory on the boundary in the

sense of Andrews (2001), detailed in Section 2.4 of the present article, requires splitting

the parameter vector θ into the following structurally different subvectors,

θ =
(
β1, β2, δ, ψ), (2.13)
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where β1 ∈ B1 ⊆ Rp1 , β2 ∈ B2 ⊆ Rp2 , δ ∈ ∆ ⊆ Rq and ψ ∈ Ψ ⊆ Rs, where p1 +p2 +q+s =

k, p := p1 + p2 and Θ = B1×B2×∆×Ψ. The intuition behind this decomposition is the

following: (1) the null hypothesis we test for is based on β1 only, and β1 may or may not

be on the boundary of the parameter space; (2) β2 may or may not be on the boundary,

but it is not tested for; (3) δ is not on the boundary, and it is not tested for; (4) ψ is not

tested for, it may or may not be on the boundary, and the off-diagonal elements of the

matrix T , defined later in (2.22), corresponding to interactions of ψ and (β1, β2, δ) are

zero.

Most importantly, the null hypothesis is based on β1 only, while the remaining param-

eters can be thought of as nuisance parameters, required for the estimation of the model.

The distinction between ψ and the remaining parameter subvectors (in particular β2) is

that the imposed nullity of certain off-diagonal elements of T implies that the asymptotic

distribution of β1 is not affected by whether ψ is on the boundary or not.

Using the subvector decomposition in (2.13), we can formally introduce the link func-

tions and the corresponding null hypotheses of interest for the joint and auxiliary encom-

passing tests. The subsequent orderings of the parameters θ follows the ordering in the

decomposition in (2.13). All following encompassing null hypotheses are formulated for

the test that the forecast pair (q̂1,t, ê1,t) encompasses (q̂2,t, ê2,t), whereas the reverse tests

can be defined by simply interchanging the forecast pairs.

(1) (Unrestricted) Linear: The unrestricted linear link functions are given by

gqt (θ) = θ6 + θ3q̂1,t + θ4q̂2,t, and (2.14)

get (θ) = θ5 + θ1ê1,t + θ2ê2,t, (2.15)

where the parameter space Θ := R6
C is essentially unrestricted, as the constant C

can be chosen sufficiently large. We henceforth denote these link functions as linear.

We then test (a) HJoint
0 : (θ1, θ2, θ3, θ4) = (1, 0, 1, 0), and (b) HAux

0 : (θ1, θ2) = (1, 0).9

This corresponds to the standard case of forecast encompassing tests (Fair and

Shiller, 1989; Clements and Harvey, 2009), which is already considered by Dimi-

triadis and Schnaitmann (2020) for the case of the VaR and ES. As none of the

parameters are on the boundary under the null, standard asymptotic theory is suf-

ficient here and we use this specification as the benchmark in this paper.

9In terms of the subvectors decomposition in (2.13), we can assign β1 := (θ1, θ2, θ3, θ4) and δ := (θ5, θ6)
for the joint test and β1 := (θ1, θ2) and δ := (θ3, θ4, θ5, θ6) for the auxiliary test. As the parameter
subvector β1 is in the interior of the parameter space under the null for both tests, classical asymptotic
theory is sufficient for this unrestricted linear link function specification.
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(2) Convex Combinations: We consider the link functions

gqt (θ) = θ4 + θ2q̂1,t + (1− θ2)q̂2,t, and (2.16)

get (θ) = θ3 + θ1ê1,t + (1− θ1)ê2,t, (2.17)

where Θ := [0, 1]2 × R2
C . We then test the following null hypothesis:

(a) HJoint
0 : (θ1, θ2) = (1, 1), and we assign β1 := (θ1, θ2) ∈ B1 := [0, 1]2, and

δ := (θ3, θ4) ∈ ∆ := R2
C .

(b) HAux
0 : θ1 = 1, and we assign β1 := θ1 ∈ B1 := [0, 1], β2 := θ2 ∈ B2 := [0, 1] and

δ := (θ3, θ4) ∈ ∆ := R2
C .

In comparison with the linear link functions, the convex forecast combinations re-

quire estimation of less parameters and therefore stabilizes the parameter estima-

tion, especially for highly correlated forecasts.10 For both hypotheses formulated

above, θ1 and θ2 are on the boundary under the null, while θ3 and θ4 are not. The

latter parameters are assigned to δ instead of ψ as the matrix T , given in (2.22),

does not have null entries at the respective points. As the tested parameters are

on the boundary of the parameter space under the null hypotheses of both tests,

their corresponding Wald test statistics are subject to a non-standard asymptotic

distribution (Andrews, 1999, 2001).

(3) No VaR and ES Crossing: We consider the link functions

gqt (θ) = θ3 + θ1ê1,t + (1− θ1)ê2,t + θ2

(
q̂1,t − ê1,t

)
+ (1− θ2)

(
q̂2,t − ê2,t

)
, and

(2.18)

get (θ) = θ3 + θ1ê1,t + (1− θ1)ê2,t, (2.19)

where Θ := [0, 1]2×R2
C . These link functions imply that gqt (θ) ≥ get (θ) holds almost

surely for all t ∈ T, which can be interpreted as a necessary condition for sensible

(combinations of) VaR and ES forecasts, which is closely related to the issue of

quantile crossings in quantile regression (Koenker, 2005). We then test

(a) HJoint
0 : (θ1, θ2) = (1, 1), and we assign β1 := (θ1, θ2) ∈ B1 := [0, 1]2, and

δ := θ3 ∈ ∆ := RC .

(b) HAux
0 : θ1 = 1, and we assign β1 := θ1 ∈ B1 := [0, 1], β2 := θ2 ∈ B2 := [0, 1] and

δ := θ3 ∈ ∆ := RC .

10Notice that for the estimation of joint VaR and ES models, especially for extreme probabilities such
as α = 2.5%, adding additional parameters is costly in terms of both, computation times and estimation
noise, see e.g. the simulations of Dimitriadis and Bayer (2019) for details.
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As in the convex setup, the tested parameters are on the boundary under the null

and non-standard asymptotic theory is required.

While we focus on these examples of link functions in this article, the asymptotic theory

presented in the subsequent section is valid for a many other interesting link functions,

such as link functions without intercepts, nonlinear functions, and further specifications

which prevent a crossing of the VaR and ES forecasts.

2.4 Asymptotic Theory on the Boundary of the Parameter Space

In this section, we derive the asymptotic theory for the M-estimator11 θ̂T , given by

θ̂T = arg min
θ∈Θ

lT (θ), where lT (θ) =
∑
t∈T

ρt
(
Yt+h, g

q
t (θ), g

e
t (θ)

)
. (2.20)

Classical asymptotic theory for the M-estimator θ̂T , as given in Patton et al. (2019), states

that given certain regularity conditions,

√
T
(
θ̂T − θ0

) d−→ N
(
0, T −1IT −1

)
, (2.21)

where

T = −E
[
∇gqt (θ0)∇gqt (θ0)>

(
g(gqt (θ

0)) +
φ′(get (θ

0))

α

)
ht(g

q
t (θ

0))

+ ∇get (θ0)∇get (θ0)>φ′′(get (θ
0))
]
, and

(2.22)

I = Var

(
T−1/2

∑
t∈T

ψt(θ
0)

)
, (2.23)

with

ψt(θ) = ∇gqt (θ)
(
g(gqt (θ)) +

φ′(get (θ))

α

)(
1{Yt+h≤gqt (θ)} − α

)
+∇get (θ)φ′′(get (θ))

(
get (θ)− g

q
t (θ) +

1

α
(gqt (θ)− Yt+h)1{Yt+h≤gqt (θ)}

)
.

(2.24)

The function ψt(θ) corresponds to the gradient of the loss function ρt(θ) almost surely,

i.e. on the set {θ ∈ Θ : Yt+h 6= gqt (θ)}, which has probability one as the distribution Ft is

assumed to be absolutely continuous.

11In order to ensure global convergence of the M-estimator by avoiding local minima, we utilize the
implementation of the R package esreg (Bayer and Dimitriadis, 2019) based on the Iterated Local Search
(ILS) meta-heuristic of Lourenço et al. (2003). See Section 3 of Dimitriadis and Bayer (2019) for further
details.
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The asymptotic normality result in (2.21) crucially depends on the regularity condition

that the true parameter θ0 is in the interior of the parameter space, int(Θ). This condition

is violated under the null hypothesis for many interesting specifications of the link func-

tions for the considered encompassing tests, as further outlined in Section 2.3. Andrews

(1999) derives the non-standard asymptotic distribution of the parameter estimates in a

general setup, which allows for parameters to be on the boundary and Andrews (2001)

extends this result to the asymptotic distribution of the resulting Wald test statistics.

Intuitively, the condition θ0 ∈ int(Θ) implies that parameters to all sides (in a neigh-

borhood) of θ0 are contained in Θ such that the estimator θ̂T is allowed to vary to all sides

of θ0. The asymptotic normality result in (2.21) formalizes this intuition by quantifying

this variation as a limiting normal distribution. In contrast, if θ0 is on the boundary of

Θ, the estimator θ̂T cannot attain values to all sides of θ0, as values in some directions are

excluded through the boundary. Consequently, in these cases the asymptotic distribution

is more complicated and non-standard, which we formalize through deriving asymptotic

theory on the boundary in the following. For this, we make the following assumptions.

Assumption 1.

(A) The parameter space is given as the product space Θ = B1×B2×∆×Ψ, where each

of these four spaces is compact and restricted by individual inequality constraints:

• B1 =
{
β1 ∈ Rp1 : Γβ1β1 ≤ rβ1

}
, where Γβ1 is a lβ1 × p1 matrix and rβ1 a

lβ1-dimensional vector,

• B2 =
{
β2 ∈ Rp2 : Γβ2β2 ≤ rβ2

}
, where Γβ2 is a lβ2 × p2 matrix and rβ2 a

lβ2-dimensional vector,

• ∆ =
{
δ ∈ Rq : Γδδ ≤ rδ

}
, where Γδ is a lδ × q matrix and rδ a lδ-dimensional

vector,

• Ψ =
{
ψ ∈ Rs : Γψψ ≤ rψ

}
, where Γψ is a lψ×s matrix and rψ a lψ-dimensional

vector.

(B) The process Zt is stationary and β-mixing of size −r/(r − 1) for some r > 1.

(C) It holds that E
[

supθ∈Θ |ρt(θ)|2r
]
< ∞ and E [supθ∈Θ ||ψt(θ)||2r] < ∞ for all θ ∈ Θ

and some δ > 0, where r > 1 is given in condition (B).12

12We state these conditions as high-level moment conditions depending on ρt(θ) and ψt(θ). The
derivations for primitive moment conditions for the semiparametric models for the VaR and ES for
specific choices of the functions g(·) and φ(·) are straight-forward, but the resulting conditions are often
rather convoluted, see e.g. Appendix A of Dimitriadis and Bayer (2019) and Assumption 2 (C) and (D)
of Patton et al. (2019).
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(D) The distribution of Yt+h given Ft, denoted by Ft, is absolutely continuous with

continuous and strictly positive density ht, which is bounded from above almost

surely on the whole support of Ft and Lipschitz continuous.

(E) The link functions gqt (θ) and get (θ) are Ft-measurable, twice continuously differen-

tiable in θ on int(Θ) almost surely, and directionally differentiable on the boundary

of Θ. Moreover, if for some θ1, θ2 ∈ Θ, P
(
gqt (θ1) = gqt (θ2) ∩ get (θ1) = get (θ2)

)
= 1,

then θ1 = θ2.

(F) The matrices I and T have full rank.

(G) The matrix-elements of T governing the dependence of (β1, β2, δ) and of ψ are zero.

Apart from the conditions (A) and (G), these assumptions are similar to the ones

of Patton et al. (2019) and Dimitriadis and Schnaitmann (2020). However, as we base

our proofs on stochastic equicontinuity and empirical process theory (Andrews, 1994),

instead of on the approach of Weiss (1991), some of the conditions differ slightly. One

main difference is that we assume the slightly stronger dependence condition of β-mixing

(instead of α-mixing) in order to show stochastic equicontinuity of the empirical process

based on the theory of Doukhan et al. (1995). Notice that the parameter space in condition

(A) can conveniently be expressed through l inequality constraints using an l× k matrix

Γθ and an l-dimensional vector rθ as13

Θ =
{
θ ∈ Rk : Γθθ ≤ rθ

}
. (2.25)

This general formulation allows for flexible product spaces of closed real intervals.

Theorem 1. Suppose Assumption 1 holds. Then

√
T
(
θ̂T − θ0

) d−→ λ̂, where λ̂ = arg inf
λ∈Λ

(λ− Z)>T (λ− Z), (2.26)

with Z = T −1G, G ∼ N (0, I) and Λ =
{
λ ∈ Rk : Γ

(b)
θ λ ≤ 0

}
, where Γ

(b)
θ denotes the

submatrix of Γθ from (2.25), which consists of the rows of Γθ for which all inequalities

Γ
(b)
θ θ

0 ≤ rθ hold as an equality.

The proof of Theorem 1 verifies the necessary assumptions in Andrews (1999) and

Andrews (2001).14 If θ0 ∈ int(Θ), none of the inequalities in (2.25) is binding and Λ = Rk.

13In fact, rθ = (rβ1
, rβ2

, rδ, rψ) and by expressing Γθ as a 4×4 block matrix, the individual blocks Γβ1
,

Γβ2
, Γδ and Γψ appear on its diagonal with rectangular zero-blocks everywhere else.

14Notice that the notation in Andrews (2001) includes the nuisance parameter π ∈ Π which we do not
require. Thus, following the comment on p.692 of Andrews (2001), we simply employ a parameter space
Π = {π0} consisting of a single point π0, e.g. π0 = 0, and suppress the dependency on π in the notation.
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This implies that λ̂ = Z almost surely in (2.26), which results in the classical asymptotic

normality result given in (2.21). In contrast, if θ0 is on the boundary of Θ, the arg inf in

(2.26) results in a non-standard asymptotic distribution of the stabilizing transformation√
T
(
θ̂T − θ0

)
.

Subvector Inference

In the notation of the subvector decomposition of θ in (2.13), we only test parametric

restrictions for the subvector β1, which might be substantially smaller than θ. Thus, the

formulation of the arg inf in (2.26) might be unnecessarily complex in these situations. To

address this issue, we derive inference for the subvector β = (β1, β2) of θ by following the

general approach of Andrews (1999, 2001). In some instances, this considerably simplifies

the solution of the arg inf in (2.26).

For this, we define the subvector γ := (β, δ) = (β1, β2, δ), which contains all parameters

in θ but ψ, with the intuition that ψ does not have any influence on the asymptotic distri-

bution of γ through the nullity restrictions on T imposed in condition (G) in Assumption

1. We define the following quantities for the subvectors β and γ,

Zγ := Tγ−1Gγ, Zβ := HZγ, with H := [Ip,0p×q], (2.27)

where Tγ denotes the upper-left (p+q)× (p+q) submatrix of T and Gγ the upper (p+q)-

dimensional subvector of G. The following theorem states the asymptotic distribution of

the subvector β.

Theorem 2. Given Assumption 1, it holds that

√
T
(
β̂T − β0

) d−→ λ̂β, (2.28)

where

λ̂β = arg inf
λβ∈Λβ

(λβ − Zβ)>
(
HTγ−1H>

)−1
(λβ − Zβ), (2.29)

and Λβ =
{
λβ ∈ Rp : Γ

(b)
β λβ ≤ 0

}
. The matrix Γ

(b)
β denotes the sub-matrix of Γβ, which

consists of the rows of Γβ for which the inequality Γββ
0 ≤ rβ holds as an equality.

Theorem 2 shows that the asymptotic distribution of β is entirely unaffected by the pa-

rameter ψ. In contrast, the subvector δ (which is contained in γ) influences the asymptotic

distribution of β through the weighting matrix in the quadratic programming problem in

(2.29), even though δ itself is not on the boundary of the parameter space.
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While closed-form representations for the distribution of λ̂β (and of λ̂) are only avail-

able in special cases (Andrews, 1999), we can conveniently simulate from its distribution

in a straight-forward fashion by solving a quadratic programming problem. For this,

notice that the minimization problem in (2.29) is equivalent to solving

min
λβ∈Rp

1

2
λ>β
(
HTγ−1H>

)−1
λβ − Z>β

(
HTγ−1H>

)−1
λβ subject to Γ

(b)
β λβ ≤ 0, (2.30)

where Γ
(b)
β is given as in Theorem 2 and specifies the binding inequality restrictions of

Λβ. Consequently, we can draw samples from the Gaussian random variable Gγ, and for

each sampled value, we solve the quadratic programming problem given in (2.30). The

respective solutions then form a sample of the random variable λ̂β, whose distribution is

asymptotically equivalent to the one of
√
T
(
β̂T − β0

)
.

The Wald Test Statistic

We now consider a Wald test for the null hypothesis H0 : β1 = β1∗ for some β1∗ ∈ B1,

which may or may not be on the boundary of B1. We define the Wald test statistic for

the null hypothesis H0 : β1 = β1∗ as

WT = T
(
β̂1 − β1∗

)>
V̂ −1
T

(
β̂1 − β1∗

)
, (2.31)

with weighting matrix V̂ −1
T , given by

V̂T := H1T̂ −1
Tγ ÎTγT̂

−1
Tγ H

>
1 , (2.32)

where H1 := [Ip,0p×q], and where T̂Tγ and ÎTγ are the upper left (p + q) × (p + q)

submatrices of T̂T and ÎT , respectively, which are consistent estimators for the matrices

T and I. For the matrix T , we use the estimator

T̂T = − 1

T

∑
t∈T

(
∇gqt (θ̂T )∇gqt (θ̂T )>

(
g(gqt (θ̂T )) +

φ′(get (θ̂T ))

α

)
1

2cT
1{|Yt+h−gqt (θ̂T )|≤cT }

+ ∇get (θ̂T )∇get (θ̂T )>φ′′(get (θ̂T ))
)
,

(2.33)

where the bandwidth cT satisfies cT = o(1) and c−1
T = o(T 1/2). In the specification of

T̂T , the term 1{|Yt+h−gqt (θ̂T ))|≤cT }/(2cT ) is a nonparametric estimator of the conditional

density ht(g
q
t (θ

0)), which is also employed in Engle and Manganelli (2004) and Patton

et al. (2019).
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As we allow for multi-step ahead (aggregate) forecasts in this treatment, we employ a

HAC estimator (Newey and West, 1987; Andrews, 1991) for the matrix I,

ÎT = Ω̂T,0 +

mT∑
j=1

z(j,mT )
(
Ω̂T,j + Ω̂>T,j

)
, where Ω̂T,j =

1

T

∑
t∈Tj

ψt(θ̂T )ψ>t−j(θ̂T ), (2.34)

based on some weight functions z(j,m)→ 1 and the bound (or bandwidth) mT = o(T 1/4).

Furthermore, ψt(θ) is given in (2.24) and we define Tj := {t ∈ N : S+ j ≤ t ≤ S+T − 1}
for all j ≥ 0. As the functions ψt(θ) are not continuous in θ, we generalize the consistency

proofs of the HAC estimator in Newey and West (1987) to nonsmooth objective functions

in Lemma 3 in the supplementary material. For the asymptotic distribution of the Wald

test statistic, we impose the following assumptions.

Assumption 2.

(H) mT →∞ such that mT = o(T 1/4) and z(j,m)→ 1 as m→∞.

(I) cT = o(1) and c−1
T = o(T 1/2).

(J) The functions gqt (θ) and get (θ) are three times continuously differentiable (in θ) and

the following moments are finite, E
[
supθ̃∈U(θ,δ)

∣∣∣∣∣∣∇θÃt(θ)
∣∣∣∣∣∣2r], E [supθ̃∈U(θ,δ)

∣∣∣∣∣∣∇θB̃t(θ)
∣∣∣∣∣∣2r],

E
[
supθ̃∈U(θ,δ)

∣∣∣Ãt(θ̃)∣∣∣2r × supθ̃∈U(θ,δ)

∣∣∣∣∣∣∇θg
q
t (θ̃)ht(g

q
t (θ̃))

∣∣∣∣∣∣2r],
and E

[
supθ∈Θ ||ψt(θ)||

2(r+δ)
]
, for some δ > 0, where Ãt(θ) and B̃t(θ) are given in

(S.5.60) and (S.5.61) in the supplementary material.

Conditions (H) and (I) are standard in the literature on HAC estimators and esti-

mating the conditional density, see e.g., Newey and West (1987), Engle and Manganelli

(2004) and Patton et al. (2019). The strengthened moment conditions (J) are required to

establish stochastic equicontinuity of the discontinuous function 1
T

∑
t∈Tj ψt(θ)ψ

>
t−j(θ) for

consistency of the HAC estimator.

Theorem 3. Suppose Assumption 1 and Assumption 2 hold. Then

WT
d−→ W := λ̂>β1V

−1λ̂β1 , (2.35)

where V denotes the probability limit of V̂T and λ̂β1 is the upper p1-dimensional subvector

of λ̂β, given in Theorem 2.

Using the simulation procedure for the distribution of λ̂β described after Theorem 2,

we can easily simulate draws from λ̂β1 and consequently from the distribution of W by
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using the formula in (2.35). Hence, we obtain simulated, asymptotic critical values for

the Wald test statistic.

We further use a variant of the HAC estimator (Newey and West, 1987; Andrews,

1991), which is specifically designed for the semiparametric VaR and ES models. For most

classical HAC estimators, estimation of the contemporaneous variance E
[
ψt(θ

0)ψ>t (θ0)
]

is

straight-forward by employing a sample counterpart. The major challenge in consistently

estimating the matrix I in (2.23) is then the inclusion of the (sample) autocovariances

E
[
ψt(θ

0)ψ>t−j(θ
0)
]

such that the resulting estimator is positive definite.

However, for the VaR and ES, and especially for extreme quantile levels, estimation of

the contemporaneous variance E
[
ψt(θ

0)ψ>t (θ0)
]

is cumbersome in itself as it depends on

the conditional truncated variance Vart(Yt+h|Yt+h ≤ gqt (θ
0)), see e.g. Dimitriadis and Bayer

(2019). For this, we employ the scl-sp estimator of Dimitriadis and Bayer (2019), which

is based on the regularizing assumption that the quantile residuals uqt+h = Yt+h − gqt (θ0)

follow a location-scale model, conditional on the employed covariates. Imposing a location-

scale model might cause some misspecification in the estimation, but it allows to use all

observations to estimate a conditional variance, and then obtain the conditional truncated

variance through a transformation formula for location-scale models. We obtain this

estimator by replacing the outer product estimator of the contemporaneous variance by

the scl-sp estimator,

ĨT = Ω̃T,0 +

mT∑
j=1

z(j,mT )
(
Ω̂T,j + Ω̂>T,j

)
, (2.36)

where Ω̃T,0 denotes the scl-sp estimator of Dimitriadis and Bayer (2019).

Even though the parametric link functions in (2.5) depend explicitly on the forecasts

q̂t and êt, it is important to note that the asymptotic theory of this section also holds

for general semiparametric models for the VaR and ES in the sense of Patton et al.

(2019). Consequently, the asymptotic theory and the proposed Wald test can further be

employed for testing (the nullity) of coefficients in the dynamic models of Taylor (2019)

and Patton et al. (2019), which are on the boundary of the parameter space under the null

hypothesis. Furthermore, the strict ES encompassing test of Dimitriadis and Schnaitmann

(2020) allows for testing encompassing of ES forecasts without their accompanying VaR

forecasts, which potentially introduces model misspecification in the parametric models.

The asymptotic theory for the M-estimator presented here can easily be adapted to the

misspecified case by replacing the matrices T and I with their misspecification-robust

counterparts of Dimitriadis and Schnaitmann (2020), and by replacing the respective

steps in the proof of Theorem 1.
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3 Simulations

In this section, we evaluate the empirical properties of the encompassing tests based on

the three different link functions specified in Section 2.3, and on the asymptotic theory

of Section 2.4. Section 3.1 numerically illustrates the effect testing on the boundary has

on the asymptotic distribution of the parameters. Subsequently, we analyze the size and

power properties of the encompassing tests in Section 3.2 for one-step ahead forecasts and

in Section 3.3 for multi-step ahead and aggregate forecasts.

3.1 The Asymptotic Distribution on the Boundary

We illustrate how true parameters on the boundary of the parameter space affect the

asymptotic distribution of the M-estimator through simulations. For this, we simulate

data according to the standard GARCH model with Gaussian innovations described in

(3.1) in Section 3.2 with an out-of-sample window length of T = 2500. We estimate the

parameters of the three considered link functions for the joint encompassing test that tests

whether forecasts stemming from the (true) GARCH model encompass forecasts from the

GJR-GARCH model given in (3.2).

Figure 1 illustrates the distribution of the parameter estimates by plotting histograms

over 10000 simulation replications for the intercept and slope parameters of the respective

ES link functions get , whose true values equal zero and one respectively throughout all

link functions. For the (unrestricted) linear link function, all true parameters are in the

interior of the parameter space and we find that the histograms for both parameters

closely approximate the asymptotic normal distribution, derived and employed by Patton

et al. (2019) and Dimitriadis and Schnaitmann (2020). In contrast, for the convex and

no-crossing link functions, the slope parameter is bounded between zero and one, i.e.

its true value of one is on the boundary of the parameter space. This results in the

non-standard distributions illustrated by the histograms for the slope parameters in the

second and third plot in the lower row of Figure 1. The histograms approximate the

asymptotic distribution consisting of a mixture of a point mass at one and a half-normal

distribution, which is considerably different from asymptotic normality. This behavior

directly carries over to the resulting asymptotic distributions of the Wald test statistics

which substantiates the necessity of the non-standard asymptotic theory on the boundary

presented in Section 2.4.

While this behavior is not unexpected for the parameters on the boundary, the asymp-

totic distribution of the intercept parameters, which themselves are in the interior of the

parameter space, is also affected due to the joint estimation. For instance, we observe a

slight skewness in the distribution of the intercept parameter of the convex link function

19



Linear Link & ES Slope Convex Link & ES Slope No−Crossing Link & ES Slope

Linear Link & ES Intercept Convex Link & ES Intercept No−Crossing Link & ES Intercept

0.4 0.8 1.2 1.6 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

−1 0 1 2 −0.3 −0.2 −0.1 0.0 0.1 0.2 −0.3 −0.2 −0.1 0.0 0.1 0.2

0

2

4

6

0

5

10

15

20

0

2

4

6

0

10

20

30

0.00

0.25

0.50

0.75

0.0

0.5

1.0

1.5

2.0

2.5

Parameter Value

D
en

si
ty

Figure 1: Illustration of the (asymptotic) distributions of the parameter estimates of the ES-
specific intercept and slope parameter corresponding to the first ES forecast ê1,t for the three
considered link functions.

contrasting the Gaussian distribution of the linear intercept parameter.

3.2 One-Step Ahead Forecasts

In this section, we investigate the empirical performance of our new encompassing tests

for one-step ahead forecasts. For this, we consider encompassing of VaR and ES forecasts

stemming from a standard GARCH and a GJR-GARCH model (Bollerslev, 1986; Glosten

et al., 1993), which are given by rj,t+1 = σj,t+1ut+1, for j = 1, 2, where the two distinct

volatility specifications are given by

σ2
1,t+1 = 0.04 + 0.1r2

1,t + 0.85σ2
1,t, and (3.1)

σ2
2,t+1 = 0.04 +

(
0.05 + 0.1 · 1{r2,t≤0}

)
r2

2,t + 0.8σ2
2,t. (3.2)

Furthermore, we employ two different residual distributions,

(a) ut+1
iid∼ N (0, 1) and (b) ut+1

iid∼ t(0.8, 5), (3.3)

where the latter denotes a skewed t-distribution, parameterized as in Fernández and Steel

(1998) and Giot and Laurent (2003), with zero mean, unit variance, a skewness parameter

of 0.8 and 5 degrees of freedom. For the two GARCH models paired with the two residual

distributions, optimal one-step ahead VaR and ES forecasts are given by q̂j,t = zασj,t+1

and êj,t = ξασj,t+1 for j = 1, 2, where zα and ξα are the α-quantile and α-ES of the
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standard normal and the skewed t-distribution, respectively.15 For both distributions,

we simulate Yt+1 = rt+1 =
(
(1 − π)σ1,t+1 + πσ2,t+1

)
ut+1 for 11 equally spaced values of

π ∈ [0, 1], where ut+1 is given as in (a) and (b) in (3.3).

We consider encompassing tests comparing the respective GARCH and GJR-GARCH

volatility specifications, where we analyze the models based on Gaussian and t-distributed

residuals in separate simulation setups. For each forecast pair, we test two null hypotheses:

the first tests whether the first forecast encompasses the second, indicated by H(1)
0 , whereas

the second tests the reverse, i.e. that forecast two encompasses forecast one, indicated by

H(2)
0 . These two null hypotheses correspond to the cases π = 0 and π = 1 in the simulation

design above. For all intermediate values of π ∈ (0, 1), the returns are generated as linear

combinations of the models, and both null hypotheses should be rejected. For both

encompassing tests, we employ the scl-sp covariance estimator of Dimitriadis and Bayer

(2019) described in Section 2.4.16 All following results are based on 2000 Monte Carlo

replications.

Table 1 reports the empirical test sizes of the joint VaR and ES and the auxiliary ES

encompassing tests based on the three link functions described in Section 2.3 for a nominal

size of 5%. For this, we consider the two GARCH specifications described in (3.1) and

(3.2) for various out-of-sample sizes ranging from T = 250 to T = 5000. We find that the

tests based on the convex and no-crossing link functions outperform the ones build on the

linear link function, especially for smaller out-of-sample sizes: the tests based on the linear

link function are in some instances severely oversized, while the other two link functions

exhibit empirical sizes generally below 10%, even for the smallest of the considered sample

sizes. Note for this that a sample size of T = 250 is considered to be very small for VaR

and ES forecasts at a probability level of α = 2.5%, as this corresponds to only six VaR

violations on average. This result can be explained by the reduced number of estimated

parameters for both, the convex and no-crossing link functions, and by the theoretically

appealing property of excluding VaR and ES crossings for the no-crossing specification.

We further find that the auxiliary ES encompassing test generally exhibits more ac-

curate (smaller) sizes than the joint VaR and ES test throughout almost all considered

designs. This behavior is particularly evident for the process with skewed-t innovations.

As the joint test includes testing of the quantile parameters, the asymptotic covariance

matrix additionally contains the density quantile function ht(g
q
t (θ

0)) in (2.22), which is

particularly challenging to estimate for small probability levels (see e.g. Koenker and

15Regarding the time index, notice that q̂j,t and êj,t represent Ft-measurable forecasts for the return
rj,t+1, while σj,t+1 is equivalently based on time t information and corresponds to the conditional volatility
of rj,t+1.

16Section S.2 in the supplemental material shows that the results for employing a HAC estimator are
qualitatively equivalent for one-step ahead forecasts.
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Table 1: Empirical Test Sizes for One-Step Ahead Forecasts.

H(1)
0 H(2)

0 H(1)
0 H(2)

0

VaR ES Aux ES VaR ES Aux ES VaR ES Aux ES VaR ES Aux ES

Linear link function

T Normal innovations Skewed-t innovations

250 21.45 11.20 19.65 10.90 31.30 16.10 31.15 16.30
500 16.60 8.60 15.30 9.10 25.40 10.60 24.25 10.45
1000 12.95 6.70 11.80 7.05 22.55 7.35 20.25 8.30
2500 11.35 6.15 9.70 5.05 16.80 5.45 15.65 4.90
5000 8.65 5.00 8.45 5.30 14.35 5.10 15.00 5.40

Convex link function

T Normal innovations Skewed-t innovations

250 10.35 8.70 7.35 6.20 13.30 10.45 10.50 8.10
500 8.10 7.50 5.35 5.35 11.16 8.91 7.80 6.90
1000 7.53 6.82 4.75 4.40 9.26 7.71 6.36 4.56
2500 5.66 5.66 4.10 3.90 7.14 5.78 5.21 3.76
5000 7.02 6.77 4.65 4.00 5.56 4.31 6.16 3.91

No-crossing link function

T Normal innovations Skewed-t innovations

250 3.90 9.15 2.65 5.20 7.45 10.95 8.45 5.25
500 2.75 8.90 4.95 4.75 7.95 10.80 10.51 4.50
1000 2.75 9.05 7.30 3.60 9.70 9.35 12.76 3.90
2500 4.55 6.60 8.55 3.85 9.76 7.56 9.80 3.05
5000 4.96 6.76 7.35 3.90 8.47 5.96 9.35 3.75

Notes: This table reports the empirical sizes of the encompassing tests with a nominal size of
5% for one-step ahead forecasts. For this, we consider the two DGPs based on different GARCH
specifications, the three link functions, the joint VaR and ES (VaR ES) and auxiliary ES (Aux
ES) tests and both encompassing null hypotheses. The columns denoted by “Normal innovations”
contain results for the GARCH(1,1) and GJR-GARCH(1,1) in (3.1) and (3.2) with normal inno-
vations, whereas those labeled “Skewed-t innovations” report results for the skewed-t distributed
innovations.

Bassett, 1978; Koenker, 2005; Dimitriadis and Bayer, 2019).

Figure 2 shows size-adjusted power curves for the joint VaR and ES and the auxiliary

ES tests based on the three link functions for a nominal significance level of 5% and

for the various settings described above.17 For computing the size-adjusted power, we

follow the approach of Davidson and MacKinnon (1998). For an increasing degree of

misspecification through π, we find increasing power throughout all considered tests and

processes. Both, the convex and no-crossing link function specifications exhibit better

(size-adjusted) power than the linear link function throughout all considered processes,

sample sizes and values of π. While the convex link function exhibits a slightly superior

17Figure S.1 in the supplementary material shows the corresponding raw power of the tests.
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Figure 2: This figure shows size-adjusted power curves for the joint VaR and ES and the auxiliary
ES encompassing tests with a nominal size of 5%. The employed link functions are indicated
with the line color and symbol shape while the line type refers to the tested null hypothesis. The
plot rows depict different sample sizes while the plot columns show results for the two innovation
distributions described in (3.1) - (3.3) and for the joint and the auxiliary tests. An ideal test

exhibits a rejection rate of 5% for π = 0 and for H(1)
0 (and inversely for π = 1 and H(2)

0 ) and as
sharply increasing rejection rates as possible for increasing (decreasing) values of π.
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performance for the joint test, the no-crossing link function performs slightly better for

the auxiliary ES test. We provide simulation results for two additional processes outside

the location-scale family in Section S.1 in the supplementary material, where the results

for these forecasts are comparable to those obtained here.

3.3 Multi-Step Ahead and Aggregate Forecasts

In this section, we consider multi-step ahead and multi-step aggregate forecasts for the

VaR and ES. For any h > 1, we set Yj,t+h = rj,t+h for multi-step ahead forecasts, and

Yj,t+h =
∑h

s=1 rj,t+s for multi-step aggregate forecasts, where the returns rj,t+h are simu-

lated from the respective GARCH specifications in (3.1) - (3.3) for j = 1, 2. In order to

simulate returns which follow a (probabilistic) convex combination of these two processes,

we simulate Bernoulli draws πt+h ∼ Bern(π) for 11 equally spaced values of π ∈ [0, 1],

and let Yt+h = (1− πt+h)Y1,t+h + πt+hY2,t+h.

Wong and So (2003) and Lönnbark (2016) among others illustrate that even though

the conditional variance of multi-step ahead (aggregate) forecasts for (quadratic) GARCH

models is easily tractable, the entire conditional distribution is not. This implies that

multi-step ahead (aggregate) VaR and ES forecasts cannot be obtained equivalently to

one-step ahead forecasts by simply multiplying their conditional multi-step ahead (aggre-

gate) volatilities with the quantile or ES of the residual distribution. Consequently, we

employ a simulation method proposed by Wong and So (2003) which yields very accu-

rate approximations of the true VaR and ES forecasts: for all out-of-sample time points

t ∈ T, we simulate R = 10000 sample paths from the respective GARCH model for h

days into the future and in order to obtain multi-period ahead (aggregate) VaR and ES

forecasts, we (point-wisely) take the empirical quantile and ES over the R sample paths

of the simulated h-period ahead (aggregated) returns.

Here, we restrict attention to the DGP based on Gaussian residuals, the convex link

function and on the joint VaR and ES encompassing test as the t-distributed residuals

and the auxiliary tests perform comparably in the previous section. However, we consider

h-step ahead and h-step aggregate VaR and ES forecasts with forecasting horizons of

h = 1, 2, 5 and 10 days. This allows to investigate the properties of the test for increasing

forecast horizons h. We employ a HAC estimator with the embedded scl-sp estimator of

Dimitriadis and Bayer (2019) for the contemporaneous variance as described in Section

2.4, as in particular the multi-period aggregate forecasts exhibit a correlated behavior due

to their inherently overlapping nature. In Section S.2 in the supplementary material, we

discuss four different covariance estimators and show that the HAC estimator augmented

with the scl-sp estimator performs best.
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Table 2: Empirical Test Sizes for Multi-Step Ahead and Aggregate Forecasts.

H(1)
0 H(2)

0

h 1 2 5 10 1 2 5 10

T h-step ahead forecasts

250 10.85 11.87 10.16 7.95 9.17 9.18 8.27 6.35
500 8.41 8.91 13.67 11.43 7.01 6.12 7.59 8.43
1000 6.83 6.70 10.87 13.15 3.51 4.62 5.52 6.51
2500 4.80 4.80 6.80 11.45 4.21 4.52 5.92 6.83
5000 3.80 4.12 5.02 9.80 3.90 4.30 6.61 5.81

T h-step aggregate forecasts

250 11.46 13.85 22.78 31.54 8.98 11.08 20.58 26.22
500 8.41 13.02 20.50 30.74 7.01 10.10 18.07 23.01
1000 6.63 9.04 16.72 26.15 3.61 6.46 14.04 18.69
2500 4.80 6.73 10.43 19.17 4.11 4.52 9.28 12.24
5000 4.10 4.42 8.52 14.36 4.40 4.02 7.02 8.72

Notes: This table shows test sizes for the joint VaR and ES forecast en-
compassing test based on the convex link function with a nominal size of
5%. We simulate data from the two GARCH specifications in (3.1) - (3.3)
with normal innovations and consider h-step ahead and h-step aggregate
forecasts for h = 1, 2, 5, 10.

Table 2 reports the tests sizes and Figure 3 presents size-adjusted power18 plots of

the joint VaR and ES encompassing test for multi-step ahead and multi-step aggregate

forecasts for a nominal significance level of 5%.19 The encompassing tests for h-step ahead

forecasts are well-sized, especially for larger sample sizes and for small horizons h. The

empirical sizes deteriorate slightly with an increasing forecast horizon h. While the general

behavior is similar for h-step aggregate forecasts, these tests suffer considerably more

from an increase of the forecasting horizon h. The inferior performance of multi-period

aggregate forecasts is not surprising given that the moment conditions of the aggregate

forecasts are heavily correlated due to the overlapping definition of the aggregate forecasts.

Concerning the size-adjusted power, depicted in Figure 3, we observe similar patterns.

For h = 1, 2, the size-adjusted power increases substantially for an increasing degree of

misspecification for all considered settings. For longer forecast horizons h = 5, 10, the test

power is generally lower for both forecast types. As before, the encompassing tests for

h-step ahead forecasts exhibit better properties than for h-step aggregate forecasts. This

can again be explained by the inherent correlation in h-step aggregate forecasts which ne-

18The size-adjusted power plots for h = 10 and T ∈ {250, 500, 1000} in Figure 3 exhibit test sizes under
the null hypotheses slightly above 5%. These are an artifact stemming from the fact that slightly more
than 5% of the simulated p-values are exactly zero, rendering an exact size-adjustment in the sense of
Davidson and MacKinnon (1998) infeasible.

19Figure S.2 in the supplementary material shows the corresponding raw power. Table S.2, Figure S.5
and Figure S.6 in the supplementary material show test results for the auxiliary ES encompassing test.
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Figure 3: This figure shows size-adjusted power curves for the joint VaR and ES encompassing
test with a nominal size of 5%, for h-step ahead and aggregate forecasts indicated with different
colors, and for the two tested null hypotheses indicated with different line types. The plot rows
depict different sample sizes, while the plot columns refer to different forecast horizons h. An

ideal test exhibits a rejection frequency of 5% for π = 0 and for H(1)
0 (and inversely for π = 1

and H(2)
0 ) and as sharply increasing rejection rates as possible for increasing (decreasing) values

of π. Note that we use a Bernoulli draw based combination method in this section as opposed
to the variance combination in Section 3.2 and hence, the results of the one-step ahead forecasts
are not necessarily identical.
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cessitates the use of a sufficiently large amount of observations for a consistent estimation

of the asymptotic covariance matrix together with its nuisance quantities and autocor-

relation structure. Hence, with an increasing forecast horizon h, a larger out-of-sample

period is required to obtain encompassing tests with reliable test decisions. Furthermore,

small sample sizes paired with large forecast horizons (e.g., T = 250 and h = 10) yield

almost flat (size-adjusted) power curves which implies that the test becomes unreliable

and practical applications should be interpreted very carefully in these scenarios.20 This

negative result is remarkable concerning the planned evaluation of 10-day ahead aggregate

ES forecasts (Basel Committee, 2019, p.89).

4 Empirical Application

This section empirically illustrates the usefulness of the proposed encompassing tests by

comparing alternative VaR and ES forecasts for daily S&P 500 returns from August 4, 2000

to June 19, 2020 including a total of 5000 daily observations. We conduct a rolling window

forecasting scheme with S = 2000 estimation observations, and T = 3000 evaluation

points starting on July 22, 2008. We follow the Basel Accords (Basel Committee, 2017,

2019) and employ α = 2.5%. Based on the simulation results of Section 3, we restrict our

attention to the tests based on the convex link functions with intercepts in the empirical

application.

Particularly, we consider a total of eleven competing risk models for forecasting VaR

and ES, including: (i) a rolling Historical Simulation using the window length of 250

days, (ii) the RiskMetrics model, (iii) the GARCH(1,1) model with normal innovations

(GARCH-N), and the GJR-GARCH(1,1) model of Glosten et al. (1993) with skewed

Student-t distributed innovations (GJR-ST), (iv) the GARCH and GJR-GARCH models

with asymmetric Laplace innovations (GARCH-AL and GJR-AL) and the same models

with a time varying shape parameter (GARCH-AL-TVP and GJR-AL-TVP) of Chen et al.

(2012), (v) the symmetric absolute value (SAV-) and asymmetric slope (AS-) CAViaR-

ES models of Taylor (2019), and (vi) the one factor GAS model (GAS-1F) of Patton

et al. (2019). Details for the risk models of Chen et al. (2012), Taylor (2019) and Patton

et al. (2019) are given in Section S.3 in the supplementary material and an additional

absolute evaluation in the form of backtests for these models is given in Section S.4 in the

supplementary material.

20Along these lines, Harvey et al. (2017) notice similar small-sample issues for forecast encompassing
tests and tests for equal predictive ability (Diebold and Mariano, 1995) for multi-step ahead forecasts.
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Table 3: Empirical Encompassing Test Results for One-Step Ahead Forecasts

Joint VaR and ES Test Auxiliary ES Test

Models E’ing E’ed Comb Incon E’ing E’ed Comb Incon Avg. Weights

GJR-ST 10 0 0 0 9 0 0 1 (0.82, 0.98)

GJR-AL-TVP 6 1 3 0 8 1 0 1 (0.86, 0.71)

AS-CAViaR-ES 5 3 1 1 6 0 0 4 (0.56, 0.66)

GARCH-AL 4 1 5 0 2 2 2 4 (0.62, 0.63)

GARCH-AL-TVP 3 1 5 1 2 3 3 2 (0.47, 0.60)

GJR-AL-CP 3 1 3 3 6 3 0 1 (0.47, 0.68)

GARCH-N 2 6 1 1 2 6 0 2 (0.46, 0.35)

SAV-CAViaR-ES 1 4 3 2 2 4 1 3 (0.45, 0.39)

RiskMetrics 1 5 1 3 1 4 2 3 (0.39, 0.21)

GAS-1F 1 7 1 1 1 8 0 1 (0.27, 0.20)

Historical Sim 0 7 3 0 0 8 2 0 (0.09, 0.06)

Notes: This table reports a summary of the test results of the joint VaR and ES and the auxiliary ES
encompassing tests based on the convex link function for one-step ahead forecasts. Entries for “E’ing”
represent the number of occurrences (out of 10) that a row-heading model encompasses a competing
model. Similarly, “E’ed” represent the frequencies that the row-heading model is encompassed, “Comb”
that neither model encompasses its competitor, and “Incon” that both models encompass each other.
The column “Avg. Weights” shows the estimated convex combination weights (θ1, θ2), averaged over
the 10 estimates for each model.

4.1 One-Step Ahead Forecasts

In this subsection, we analyze pairwise encompassing for one-step ahead VaR and ES

forecasts using the encompassing tests based on the convex link functions. For each model

pair, we estimate the combination weights and test both null hypotheses, i.e. that model

one encompasses model two and vice versa. We obtain simulated critical values for the

test through Theorem 3 and by employing the scl-sp estimator of Dimitriadis and Bayer

(2019). Due to the simulation results of Section S.2 in the supplementary material, we do

not consider estimation of HAC-terms in the covariance for one-step ahead forecasts.

We report the summarized results for the joint VaR and ES and the auxiliary ES en-

compassing tests with a significance level of 5% for all pairwise combinations of the eleven

risk models in Table 3, where the models (in the table rows) are sorted according to their

encompassing performance. Out of the ten model combinations each individual model is

subject to, we report the instances how often both null hypotheses are rejected (denoted

by ”Combination” or ”Comb”), not rejected (”Inconclusive” or ”Incon”), only the first

one is rejected (”Encompassed” or ”E’ed”), and only the second one is rejected (”Encom-
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passing” or ”E’ing”). Notice that the ”Combination” column is based on rejecting both

null hypotheses, which constitutes a multiple testing problem and the results have to be

interpreted at a Bonferroni corrected significance level of 10%, while each individual tests

are based on a nominal significance level of 5%.21

We find that the GJR-GARCH models with Skew-t and asymmetric Laplace innova-

tions achieve the best forecasting performance among the competing models. Interestingly,

the CAViaR-ES models of Taylor (2019) and the GAS-1F model of Patton et al. (2019),

which are specifically developed for jointly forecasting VaR and ES, generally do not per-

form as good as the GARCH specifications. As expected, the RiskMetrics and Historical

Simulation models perform worst. Furthermore, we find many instances of rejections of

both encompassing hypotheses, implying that a forecast combination via the estimated

encompassing weights is superior to both individual models. This result justifies the use-

fulness of the proposed encompassing tests, and is in line with the arguments for forecast

combinations of Giacomini and Komunjer (2005), Timmermann (2006), Taylor (2020)

and Dimitriadis and Schnaitmann (2020).

4.2 10-Step Ahead and Aggregate Forecasts

In this subsection, we apply the proposed encompassing tests to 10-day ahead and ag-

gregate VaR and ES forecasts. Note that 10-day aggregate VaR and ES forecasts are

required by the Basel Accords for minimal capital requirement and risk weighted assets

(Basel Committee, 2019, 2020). As it is unclear how to obtain multi-step ahead forecasts

from the CAViaR-ES models of Taylor (2019) and the GAS-1F model of Patton et al.

(2019), we reduce the set of evaluation models to the seven members of the GARCH

family. For these models, we obtain multi-step ahead and multi-step aggregate VaR and

ES forecasts through the simulation method of Wong and So (2003), further described

in Section 3.3. Such a simulation-based forecasting is necessary as the conditional distri-

bution of multi-step returns generally differs from the imposed innovation distribution of

the model, and thus, VaR and ES forecasts cannot be obtained through classical location-

scale formulas as for one-step ahead forecasts. Based on the results of Section S.2 in the

supplementary material, we use a HAC covariance estimator (Newey and West, 1987),

augmented with the scl-sp estimator of Dimitriadis and Bayer (2019) for the contempo-

raneous variance component to perform the encompassing tests for multi-step ahead and

aggregate forecasts.

Table 4 reports the summarized encompassing test results for 10-step ahead and ag-

21Table S.4 in the supplementary material reports the correlations of the VaR and ES forecasts and
Table S.5 additionally reports the estimated (convex) combination weights together with the test decisions
for the combinations of the six bestperforming models, chosen by the absolute evaluation in Table S.9.
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Table 4: Encompassing Test Results for 10-Step Ahead and Aggregate Forecasts

10-Step Ahead Forecasts

Joint VaR and ES Test Auxiliary ES Test

Models E’ing E’ed Comb Incon E’ing E’ed Comb Incon Avg. Weights

GJR-AL-TVP 6 0 0 0 5 0 0 1 (0.98, 0.99)

GARCH-AL-TVP 5 1 0 0 3 0 0 3 (0.74, 0.84)

GJR-ST 2 2 0 2 3 1 0 2 (0.63, 0.49)

GARCH-N 1 2 0 3 1 2 0 3 (0.51, 0.40)

GARCH-AL 1 3 0 2 0 2 0 4 (0.26, 0.30)

GJR-AL 0 5 0 1 0 4 0 2 (0.24, 0.32)

RiskMetrics 0 2 0 4 0 3 0 3 (0.21, 0.23)

10-Step Aggregate Forecasts

Joint VaR and ES Test Auxiliary ES Test

Models E’ing E’ed Comb Incon E’ing E’ed Comb Incon Avg. Weights

GJR-AL-TVP 6 0 0 0 5 0 0 1 (0.86, 0.93)

GARCH-AL-TVP 4 1 0 1 5 0 0 1 (0.95, 0.86)

GJR-ST 3 1 0 2 3 2 0 1 (0.51, 0.34)

GARCH-N 2 3 0 1 2 2 0 2 (0.41, 0.47)

GJR-AL 1 2 1 2 2 3 0 1 (0.37, 0.42)

GARCH-AL 1 4 1 0 1 5 0 0 (0.33, 0.42)

RiskMetrics 0 6 0 0 0 6 0 0 (0.04, 0.03)

Notes: This table reports a summary of the test results of the joint VaR and ES and the auxiliary ES
encompassing tests based on the convex link function, for 10-step ahead forecasts in the upper panel
and for 10-step aggregate forecasts in the lower panel. Entries for “E’ing” represent the number of
occurrences (out of 6) that a row-heading model encompasses a competing model. Similarly, “E’ed”
represent the frequencies that the row-heading model is encompassed, “Comb” that neither model
encompasses its competitor, and “Incon” that both models encompass each other. The column “Avg.
Weights” shows the estimated convex combination weights (θ1, θ2), averaged over the 10 estimates for
each model.

30



gregate forecasts.22 The test results show that for both, 10-step ahead and aggregate

forecasts, the best performing model is the GJR-GARCH model with asymmetric Laplace

innovations and a time-varying shape parameter. We find almost no cases of double re-

jections, i.e. forecast combinations are not (significantly) preferred over the stand-alone

models. This can be an artifact from the lower power for multi-step forecasts as illustrated

in Section 3.3 or from the high(er) correlations of the forecasts, reported in Table S.6 in

the supplementary material.

Overall, the empirical results show that a model specified with an asymmetric volatil-

ity process and a skewed error distribution, such as the GJR-ST model, outperforms the

competing models considered in this paper for one-step ahead VaR and ES forecasts.

Moreover, models based on an asymmetric innovation distribution with time-varying pa-

rameters, such as, GJR-AL-TVP and GARCH-AL-TVP models, perform better than the

other competing models. Note that the time-varying scale parameter of the asymmetric

Laplace distribution produces both time-varying skewness and kurtosis for the innova-

tion distribution. We find that specifying time-varying higher moments for a risk model

substantially improves the model forecasting performance in both multi-step ahead and

aggregate risk forecasts, much more than in one-step ahead forecasts.

5 Conclusion

This article proposes joint encompassing tests which compare one-step and multi-step VaR

and ES forecasts based on general semiparametric forecast combination methods (link

functions) for the VaR and ES. While unrestricted linear methods are often employed in

encompassing tests for functionals like the mean and quantiles (the VaR) as e.g. in Hendry

and Richard (1982); Giacomini and Komunjer (2005), different combination methods are

of particular interest for the ES. E.g., our no-crossing link specification theoretically

circumvents crossings of the predicted VaR and ES, which is conceptually desirable but

not straight-forward to achieve (Taylor, 2020).

Our employed link functions imply that some of the tested parameters are on the

boundary of the parameter space under the null hypothesis, which necessitates non-

standard asymptotic theory. Based on the general framework of Andrews (1999, 2001),

we provide such novel asymptotic theory for the proposed encompassing tests and for the

accompanying Wald test statistics, which allows for inference and testing on the bound-

ary. Our simulations show that the proposed VaR and ES forecast encompassing tests

based on the convex and no-crossing link functions exhibit superior size and power prop-

22Table S.7 and Table S.8 in the supplementary material report the detailed test results. Table S.6
additionally reports correlations for the 10-day ahead and aggregate VaR and ES forecasts.
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erties than those based on unrestricted linear link functions. By employing the proposed

encompassing tests in a real data analysis, we find that building risk models on specifica-

tions including time-varying higher moments substantially improves the model forecasting

performance, especially for multi-step ahead and aggregate VaR and ES forecasts.

Our framework allows for several straight-forward extensions. Encompassing tests for

multiple VaR and ES forecasts in the sense of Harvey and Newbold (2000) can directly

be implemented through our asymptotic theory by adapting the link functions. Further-

more, the asymptotic theory allows for encompassing tests based on any strictly consistent

loss function for the VaR and ES. Incorporating estimation risk into these tests can be

obtained by combining our theory with the work of Escanciano and Olmo (2010); Du

and Escanciano (2017); Barendse et al. (2019), and incorporating model misspecification

through combining our theory with the one of Dimitriadis and Schnaitmann (2020). En-

compassing tests for different functionals such as e.g., the mean, quantiles, expectiles or

probability densities based on link functions which require testing on the boundary (e.g.,

using convex link functions) can be implemented through adapting our asymptotic theory

to semiparametric models for the functional under consideration. Eventually, our asymp-

totic theory can be used to test (e.g., for nullity of) model parameters on the boundary of

the parameter space for the semiparametric VaR and ES models of Patton et al. (2019),

Taylor (2019) or Gerlach and Wang (2020), along the lines of Francq and Zaköıan (2009).
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A Proofs

Proof of Theorem 1. For this proof, we employ Theorem 3 of Andrews (1999) (or equiva-

lently Theorem 1 of Andrews (2001)), for which we verify the necessary Assumptions 1-6

of Andrews (1999) in the following.

We start by showing Assumption 1, i.e. the consistency of θ̂T . For this, we employ
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Theorem 2.1 of Newey and McFadden (1994). Assumption (i), i.e. that l(θ) is uniquely

minimized by θ0 follows directly from the identification condition (E) and from the strict

consistency result of the loss functions of Fissler and Ziegel (2016). Condition (ii) follows

directly as we impose that Θ is compact. Condition (iii) holds as l(θ) is continuous for all

θ ∈ Θ as the distribution Ft is absolutely continuous and we use continuously differentiable

functions g, φ, gq and ge. The uniform consistency of T−1lT (θ) of condition (iv) is shown

by employing Theorem 21.9 of Davidson (1994). For this, we need that a point-wise law

of large numbers holds for T−1lT (θ) for all θ ∈ Θ, which can be verified e.g., by employing

Corollary 3.48 of White (2001). This holds as ρt(θ) is α-mixing of size −r/(r − 1) for

r > 1 from condition (B) as β-mixing series are also α-mixing of same size by Bradley

(2005) and E
[
|ρt(θ)|2r

]
< ∞ for all θ ∈ Θ by condition (C). Furthermore, the sequence

lT (θ) is stochastically equicontinuous by Lemma 1 in the supplementary material. Thus,

supθ∈Θ |T−1lT (θ)− l(θ)| P−→ 0 and consistency of θ̂T follows from Theorem 2.1 of Newey

and McFadden (1994).

Assumption 2∗ of Andrews (1999) is shown through the sufficient condition Assump-

tion 12∗ on page 53 in Andrews (1997). For this, condition (a) holds trivially, and condition

(b) follows directly from the uniform consistency result of T−1lT (θ). For condition (c), we

set Θ+ = Θ. Given condition (A), locally to θ0, Θ equals a union of (Cartesian) orthants.

For condition (d), we notice that l(θ) is twice continuously differentiable on the interior

of Θ and has partial right/left derivatives on the boundary of Θ of order one and two. It

further holds that ∇θl(θ
0) = 0 as the function l(θ) is uniquely minimized by θ0. Notice

that this also holds for the respective directional derivatives if θ0 lies on the boundary of

Θ.

Eventually, for condition (e), Lemma 2 in the supplementary material shows that

the functions ρt(θ) given in (2.6) form a type IV class (see Andrews (1994), p.2278)

with index p = 2r such that by Theorem 6 in Andrews (1994), it satisfies Ossiander’s

L2r-entropy condition and consequently has an L2r-envelope. Furthermore, the moments

E
[
supθ̃∈U(θ,δ)

∣∣∣∣∣∣ρt(θ̃)∣∣∣∣∣∣2r]1/2r

<∞ are bounded by assumption. Consequently, by Theorem
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1 and Application 1 in Doukhan et al. (1995), we obtain that the empirical process, given

by T−1/2
∑

t∈T
(
ρt(θ)−E[ρt(θ)]

)
, is stochastically equicontinuous (see the remark on p.410

of Doukhan et al. (1995)). Hence, the process T−1lT (θ)−l(θ) is stochastically differentiable

(see e.g. Newey and McFadden (1994), p.2187 or the proof after Theorem 3.1 in Dobric and

Liebars (1994), which does not rely on the imposed iid assumption of that paper). Thus,

all conditions in Assumption 12∗ of Andrews (1997) are fulfilled and hence, Assumption

2∗ of Andrews (1999) holds.

In the following, we verify Assumption 3∗ (which implies Assumption 3) of Andrews

(1999), i.e. that T−1/2
∑

t∈T ψt(θ
0)

d−→ G, whereG ∼ N (0, I), and I = Var
(
T−1/2

∑
t∈T ψt(θ

0)
)
,

with ψt(θ
0) given in (2.24). By using the Cramer-Wold theorem, we instead show that

T−1/2
∑

t∈T u
>ψt(θ

0)
d−→ u>Gu for all u ∈ Rk where ||u|| = 1. This holds as Zt is as-

sumed to be β-mixing of size −r/(r − 1) for r > 1 from condition (B) and β-mixing

implies α-mixing of same size (Bradley, 2005). By Theorem 3.49 in White (2001), we

then get that u>ψt(θ
0) are also α-mixing of the same size. Furthermore, it holds that

E
[∣∣u>ψt(θ0)

∣∣2r] < E [supθ∈Θ ||ψt(θ)||2r] < ∞ condition (C) in Assumption 1. The ma-

trix I = Var
(
T−1/2

∑
t∈T ψt(θ

0)
)

does not depend on T as the process is assumed to be

stationary. As I has full rank by condition (F), it holds that Var
(
T−1

∑
t∈T u

>ψt(θ
0)
)
≥

λmin > 0, where λmin is the smallest Eigenvalue of I. Consequently, applying Theorem

5.20 in White (2001) delivers the asymptotic normality result.

Following condition (A), the parameter space is given as the product Θ = B1×B2×∆×

Ψ, and each of these four spaces is given by (linear) inequality constraints. Consequently,

Θ can also be expressed through a system of inequalities of the form Γθθ ≤ rθ, for some

matrix Γθ and vector rθ of appropriate dimensions. Then, following equations (4.6) and

(4.7) of Andrews (1999), the cone Λ is given by

Λ = {λ ∈ Rk : Γ
(b)
θ λ ≤ 0}, (A.1)

where Γ
(b)
θ consists of the rows of Γθ for which the inequality Γθθ

0 ≤ rθ is binding (i.e. it
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holds as an equality). As this specification of Λ is a convex cone, this shows Assumption

5 and 6 of Andrews (1999), i.e. that Θ− θ0 locally equals a convex cone Λ ⊂ Rk.

Consequently, we can apply Theorem 3 of Andrews (1999) (or equivalently Theorem

1 of Andrews (2001)), which completes the proof of this theorem.

Proof of Theorem 2. The result follows directly from Theorem 2 of Andrews (2001). Be-

sides the assumptions of Theorem 1 (of the present article), we further need to verify

Assumptions 7 and 8 of Andrews (2001). Assumption 7(a) is fulfilled by the imposed

condition (G) in Assumption 2. Furthermore, Assumption 7(b) follows directly from con-

dition (A) and from the specification given in (2.25). Assumption 8 also holds trivially as

δ is assumed to be in the interior of Θ, which concludes this proof.

Proof of Theorem 3. In order to employ Theorem 6 of Andrews (2001), we verify the

necessary Assumptions 9 and 12 of Andrews (2001). For the verification of Assumptions

1-8, see the proof of Theorem 1 and Theorem 2. For Assumption 9, notice that testing

β1 = β∗1 corresponds to the null hypothesis that θ ∈ Θ0 =
{
θ = (β1, β2, δ, ψ) ∈ Θ : β1 =

β∗1
}

. Consequently, Assumption 9(a) is satisfied. Assumption 9(b) holds as throughout the

paper BT =
√
TIk and Assumption 9(c) follows directly from condition (A). Eventually,

Assumption 9(d) follows as B1 and B2 in condition (A) are given by separate inequality

constraints.

Assumption 12∗(a) corresponds to Assumption 11(a), which requires that the random

variable G ∼ N (0, I) (simplified for the case that the space Π is single-valued). This

follows directly from the proof of Theorem 1 (where Assumption 3∗ of Andrews (1999) is

verified). Assumption 12∗(b) follows directly from (2.32) and the conditions Assumption

12∗(c).

Consistency of the ”bread” matrix, T̂T
P−→ T follows directly from Theorem 3 of Pat-

ton et al. (2019) and consistency of the HAC estimator ÎT
P−→ I is shown in Lemma

3 in the supplementary material. Notice for this that joint convergence in probability(
T̂T , ÎT

) P−→
(
T , I

)
follows directly from both variables converging in probability sepa-
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rately. Eventually, Assumption 12∗(e) follows as the matrix I has full rank by assumption.

Consequently, the conditions of Theorem 6 of Andrews (2001) are satisfied and part

(d) yields that WT
d−→ λ̂>β1V

−1λ̂β1 , where λ̂ =
(
λ̂β1 , λ̂β2 , λ̂δ, λ̂ψ

)
is given in Theorem 2.
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All references to equations, sections, tables and figures starting with S. refer to this

supplement while the remaining references refer to the main document of the article.

S.1 Additional DGPs for the Simulation Study

Following Dimitriadis and Schnaitmann (2020), this section provides simulation results

for two additional data generating processes (DGPs) outside the class of location-scale

models as a robustness check for the proposed encompassing tests.

For the first additional simulation design, we introduce two specifications of generalized

autoregressive score (GAS) models proposed by Creal et al. (2013). We generate r1,t+1, q̂1,t

and ê1,t from a GAS model with Gaussian innovations, which corresponds to the standard

GARCH(1,1) specification given in (3.1). We obtain the second sequence of forecasts from

a GAS model with Student-t residuals with time-varying variance and degrees of freedom,

given by

(µ̂2, σ̂
2
2,t, ν̂2,t)

> = κ+B · (µ̂2, σ̂
2
2,t−1, ν̂2,t−1)> + AHt∇t, (S.1.1)

where Ht∇t is the forcing variable of the model, the scaling matrix Ht is the Hessian

and ∇t the derivative of the log-likelihood function. We calibrate both models to daily

S&P 500 returns resulting in the parameter values κ = (0.0659, 0.00599,−1.737), A =

diag(0, 0.146, 7.563) and B = diag(0, 0.994, 7.381). This model implies that r2,t+1 ∼
tν̂2,t
(
µ̂2, σ̂

2
2,t

)
and we obtain one-step ahead VaR and ES forecasts from this t-distribution.

In the second additional simulation setup, we implement the one-factor (1F) and two-

factor (2F) GAS models for the VaR and ES of Patton et al. (2019). The 1F-GAS model
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evolves as

q̂1,t = −1.164 exp(κ̂t) and ê1,t = −1.757 exp(κ̂t), where

κ̂t = 0.995κ̂t−1 +
0.007

ê1,t−1

(r1,t

α
1{r1,t≤q̂1,t−1} − ê1,t−1

)
.

(S.1.2)

The 2F-GAS model follows the specification(
q̂2,t

ê2,t

)
=

(
−0.009

−0.010

)
+

(
0.993 0

0 0.994

)(
q̂2,t−1

ê2,t−1

)
+

(
−0.358 −0.351

−0.003 −0.003

)
λt, (S.1.3)

where the forcing variable is given by λt =
(
q̂2,t−1(α − 1{r2,t≤q̂2,t−1}), 1{r2,t≤q̂2,t−1}r2,t/α −

ê2,t−1

)>
. For both models, j = 1, 2, we simulate rj,t+1 ∼ N

(
µ̂j,t, σ̂

2
j,t

)
, where the condi-

tional mean and standard deviations are given by µ̂j,t = q̂j,t− zα êj,t−q̂j,tξα−zα and σ̂j,t =
êj,t−q̂j,t
ξα−zα ,

such that Qα(rj,t+1|Ft) = q̂j,t and ESα(rj,t+1|Ft) = êj,t almost surely. The parameter

values for this model are obtained from Table 8 of Patton et al. (2019) and correspond to

calibrated parameters to daily S&P 500 returns.

In order to simulate returns which follow a convex combination of these two conditional

distributions (for both DGPs), we simulate Bernoulli draws πt+1 ∼ Bern(π) for 11 equally

spaced values of π ∈ [0, 1], and let Yt+1 = rt+1 = (1 − πt+1)r1,t+1 + πt+1r2,t+1. Thus, for

π = 0, Yt+1 follows the first model, for π = 1, Yt+1 follows the second model, and for

π ∈ (0, 1), Yt+1 follows some convex combination of the two models.23

Table S.1 shows the empirical sizes for the joint VaR and ES and the auxiliary ES

encompassing tests for both null hypotheses, both DGPs, the three different link func-

tions and various out-of-sample sizes T and Figure S.4 presents the empirical rejection

frequencies. As for the two GARCH-based DGPs, the tests based on the convex and no-

crossing link functions outperform the tests based on the linear link function. Moreover,

the auxiliary ES test performs slightly better than the joint VaR and ES encompassing

test, especially in terms of its size properties. This qualitatively confirms the result for

the GARCH DGPs of Section 3.

23While generating returns stemming from convex combinations of GARCH-type volatility models is
straight-forward by using convex combinations of the conditional volatilities, this is not as simple for the
more general GAS models considered in this section. Consequently, we use this more involved approach
based on Bernoulli draws in order to generate these convex model combinations. This is comparable to
our combination approach of multi-step forecasts.
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S.2 Covariances Estimation

In this section, we compare the performance of the joint VaR and ES encompassing test for

four different covariance estimators, where we consider multi-step ahead and multi-step

aggregate forecasts at different forecast horizons. These estimators differ with respect to

the estimation of the ”meat” matrix I, given in (2.23), where we consider an estimator

based on HAC terms (Newey and West, 1987) and one without, paired with either the

outer product of the gradient of ψt(θ), or the scl-sp estimator of Dimitriadis and Bayer

(2019).

More precisely, the first estimator is given by Î(1)
T = Ω̂T,0, where the contemporaneous

covariance matrix is estimated by the outer product of the gradient of ψt(θ) as given in

(2.34). The second estimator is specified as Î(2)
T = Ω̃T,0 where Ω̃T,0 denotes the scl-sp

estimator of Dimitriadis and Bayer (2019). The third specification employs a standard

HAC estimator (Newey and West, 1987; Andrews, 1991) as in (2.34), based on an auto-

matic lag selection implemented in the R package sandwich (Zeileis, 2004, 2006). The last

specification combines the HAC estimator with the scl-sp estimator of Dimitriadis and

Bayer (2019) by replacing the outer product estimator of the contemporaneous variance

by the scl-sp estimator as in (2.36).

Figure S.7 shows the empirical rejection frequencies for the joint VaR and ES encom-

passing test based on the four different covariance estimators for h-step ahead forecasts

with forecast horizons h = 1, 2, 5, 10. Figure S.8 presents equivalent results for h-step

aggregate forecasts. For one-step ahead forecasts, the respective lines for the HAC and

non-HAC estimators coincide, which stems from the fact that the automatic lag selection

almost exclusively chooses no additional lag terms beyond the contemporaneous vari-

ance term and hence, for one-step ahead forecasts, our encompassing tests do not require

HAC-corrected covariance estimators. The different performance stems from the estima-

tion of the contemporaneous variance, where the closed-form solution based on the scl-sp

estimator performs clearly superior to the outer product based version.

For h-step ahead forecasts for larger forecast horizons, the covariance estimator com-

bining the scl-sp estimator with additional HAC terms performs (only) slightly superior

to the raw scl-sp estimator. However, for inherently correlated multi-step ahead aggre-

gate forecasts, presented in Figure S.8, this deviance becomes more obvious, especially

for increasing forecast horizons. Consequently, for any h > 1 for both, h-step ahead and

aggregate forecasts, we use the scl-sp estimator augmented with additional HAC-terms.
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S.3 Risk Models for the Empirical Application

In this section, we describe the (non-standard) risk models of Chen et al. (2012), Taylor

(2019) and Patton et al. (2019) for forecasting VaR and ES in the empirical application

in Section 4.

Chen et al. (2012) proposes to use GARCH models with innovations which follow an

asymmetric Laplace distribution in order to capture potential (dynamic) skewness and

heavy tails. In particular,

rt = σt (εt − µε) , εt
iid∼ AL(0, 1, p) (S.3.1)

where σt follows either a GARCH(1,1) or a GJR-GARCH(1,1) specification, and where

AL (0, 1, p) represents the asymmetric Laplace distribution with zero mode, unit variance,

and shape parameter p, which is defined such that p = P (εt < 0). The AL (0, 1, p)

probability density function has the following form

f (ε; p) = bp exp

[
−bp |ε|

(
1

p
1{ε<0} +

1

1− p
1{ε>0}

)]
, (S.3.2)

where bp =
√
p2 + (1− p)2, Var[εt] = 1 and E[εt] = µε = (1− 2p) /bp. Thus, ut = εt − µε

has an asymmetric Laplace distribution with zero mean, unit variance, and the shape

parameter p. Note that p = 0.5 implies a symmetric, standard Laplace distribution. If

p < 0.5, the density is skewed to the right, while the opposite applies for p > 0.5. The

VaR and ES (in the relevant area24 α ∈ (0, p)) can then be obtained analytically as

q̂t = σt
p

bp
log

(
α

p

)
− µεσt, and êt = q̂t −

q̂t

log
(
α
p

) .
The GARCH and GJR-GARCH models with a constant shape parameter p are denoted

by GARCH-AL and GJR-AL, respectively.

Chen et al. (2012) further propose to augment these models with a time-varying shape

parameter, which allows for dynamic higher moments for rt, and whose dynamics are given

by

pt =
1

1 +
√

ξt
ζt

where ξt = (1− λ) |ut−1|1{ut−1≥0} + λξt−1, and ζt = (1− λ) |ut−1|1{ut−1<0} + λζt−1, for

some smoothing parameter 0 ≤ λ ≤ 1. The models with a time-varying shape parameter

24In practice p is usually close to 0.5 and α << 0.5 is often chosen for VaR and ES in financial risk
management.
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pt are denoted as GARCH-AL-TVP and GJR-AL-TVP.

Taylor (2019) employs semiparametric models to forecast VaR and ES by augmenting

the CAViaR models of Engle and Manganelli (2004) with an additional component for the

ES. In particular, the author assumes that the conditional quantile q̂t at level α follows

either the symmetric absolute value (SAV) or the asymmetric slope (AS) CAViaR models,

SAV : q̂t = β0 + β1q̂t−1 + β2 |rt−1| , and (S.3.3)

AS : q̂t = β0 + β1q̂t−1 + β2 |rt−1|1{rt−1≥0} + β3 |rt−1|1{rt−1<0}. (S.3.4)

Since the dynamics of the VaR may not be the same as the dynamics of the ES, Taylor

(2019) equips these CAViaR models with the following ES specification

êt = q̂t − xt (S.3.5)

xt =

κ0 + κ1 (q̂t−1 − rt−1) + κ2xt−1 if rt−1 ≤ q̂t−1

xt−1 otherwise,

where κ0 > 0 and κ1, κ2 ≥ 0 ensure that êt < q̂t for q̂t < 0. The model specification given

by (S.3.3) an (S.3.5) is denoted as the SAV-CAViaR-ES model, and the model specified by

(S.3.4) and (S.3.5) as the AS-CAViaR-ES model. These models are estimated by quasi-

maximum likelihood based on the asymmetric Laplace distribution, which corresponds to

a special case of the M-estimator considered by Patton et al. (2019), and given in (2.6)

and (2.20) of this article. In particular, Taylor (2019) shows that under the assumption

of a zero (conditional) mean, the (negative) of the asymmetric Laplace log-likelihood

corresponds (up to constants) to the loss function in (2.6) with g(z) = 0 and φ(z) =

− log(−z).

Finally, we consider the one factor GAS model of Patton et al. (2019) (also denoted

by GAS-1F) which directly incorporates forcing variables into the dynamic process of the

conditional variance in the sense of GAS models of Creal et al. (2013). In particular,

q̂t = a exp(κ̂t) and êt = b exp(κ̂t), where

κ̂t = β0 + β1κ̂t−1 +
β2

êt−1

(rt
α
1{rt≤q̂t−1} − êt−1

)
.

and q̂t = σtκ and êt = σtδ where the restrictions δ < κ < 0 are imposed in the model

estimation to ensure that êt < q̂t. The model is estimated by M-estimator given in (2.6)

and (2.20).

Table S.3 in Appendix S.6 reports parameter estimates of the risk models for the full

sample.
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S.4 Absolute Forecast Evaluation

Table S.9 shows absolute forecast evaluation criteria, including several backtests, for

one-step ahead VaR and ES forecasts. For this, the VaR Violation Ratio is given by

α̂/α, where α̂ = T−1
∑

t∈T 1{Yt+1<q̂t} and the empirical ES ratio is computed as ESR =∑
t∈T [Yt+1 1{Yt+1<q̂t}

]
/
∑

t∈T
[
êt1{Yt+1<q̂t}

]
. Furthermore, we report p-values of the un-

conditional coverage (UC) test of Kupiec (1995), the conditional coverage (CC) test of

Christoffersen (1998), the dynamic quantile (DQ) test of Engle and Manganelli (2004),

the VQR test of Gaglianone et al. (2011), the ES backtest of McNeil and Frey (2000)

(MF), the regression-based ES backtest of Bayer and Dimitriadis (2020) (BD), and for

the calibration test of Nolde and Ziegel (2017) (NZ). Table S.9 shows that six out of the

eleven models pass all (are not rejected by any of the) seven backtests at a 5% significance

level, where the p-values in bold indicate that the null hypotheses of these tests are not

rejected for any of the tests.

S.5 Technical Details of the Proofs

Lemma 1 (Stochastic Equicontinuity of the Loss Function). Given Assumption

1, the function T−1lT (θ) is stochastically equicontinuous, i.e. for all ε > 0, there exists a

δ > 0, such that

lim sup
T→∞

P

[
sup

{θ,θ̃∈Θ:||θ̃−θ||<δ}
||T−1lT (θ)− T−1lT (θ̃)|| > ε

]
< ε. (S.5.1)

Proof. In the following, we show that for all θ, θ̃ ∈ Θ and for all T ∈ N, it holds that

|T−1lT (θ)− T−1lT (θ̃)| ≤ KT ||θ − θ̃||, (S.5.2)

whereKT = OP (1), which implies stochastic equicontinuity by Theorem 21.10 of Davidson

(1994).

For this, we split the loss function

ρt(θ) =
(
1{Yt+h≤gqt (θ)} − α

)
g(gqt (θ))− 1{Yt+h≤gqt (θ)}g(Yt+h)

+ φ′(get (θ))

(
get (θ)− g

q
t (θ) +

(gqt (θ)− Yt+h)1{Yt+h≤gqt (θ)}

α

)
− φ(get (θ)) + a(Yt+h)

=: At(θ)1t+h(θ) +Bt(θ)1t+h(θ) + Ct(θ) + a(Yt+h),

(S.5.3)
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where we use the short notation 1t+h(θ) := 1{Yt+h≤gqt (θ)} and

At(θ) := g(gqt (θ))− g(Yt+h), (S.5.4)

Bt(θ) := φ′(get (θ))/α
(
gqt (θ)− Yt+h

)
, and (S.5.5)

Ct(θ) := φ′(get (θ))
(
get (θ)− g

q
t (θ)

)
− φ(get (θ))− αg(gqt (θ)). (S.5.6)

It holds that

|lT (θ)− lT (θ̃)| ≤
∣∣At(θ)1t+h(θ)− At(θ̃)1t+h(θ̃)∣∣

+
∣∣Bt(θ)1t+h(θ)−Bt(θ̃)1t+h(θ̃)

∣∣
+
∣∣Ct(θ)− Ct(θ̃)∣∣.

(S.5.7)

As Ct is continuously differentiable, for the third term in (S.5.7) we get that

∣∣Ct(θ)− Ct(θ̃)∣∣ ≤ (sup
θ∈Θ
||∇θCt(θ)||

)
· ||θ − θ̃|| (S.5.8)

where supθ∈Θ ||∇θCt(θ)|| = OP (1) as E [supθ∈Θ ||ψt(θ)||2r] <∞ by condition (C). For the

first term in (S.5.7), first notice that

(
g(gqt (θ))− g(Yt+h)

)
1{Yt+h≤gqt (θ)} =

1

2

(
g(gqt (θ))− g(Yt+h) +

∣∣g(gqt (θ))− g(Yt+h)
∣∣) .
(S.5.9)

Thus, it holds that

∣∣At(θ)1t+h(θ)− At(θ̃)1t+h(θ̃)∣∣ (S.5.10)

=
1

2

∣∣∣(g(gqt (θ))− g(Yt+h) +
∣∣g(gqt (θ))− g(Yt+h)

∣∣)− (g(gqt (θ̃))− g(Yt+h) +
∣∣g(gqt (θ̃))− g(Yt+h)

∣∣)∣∣∣
(S.5.11)

≤ 1

2

∣∣∣(g(gqt (θ))− g(Yt+h))−
(
g(gqt (θ̃))− g(Yt+h)

)∣∣∣+
1

2

∣∣∣|g(gqt (θ))− g(Yt+h)| −
∣∣∣g(gqt (θ̃))− g(Yt+h)

∣∣∣∣∣∣
(S.5.12)

≤
∣∣∣g(gqt (θ))− g(gqt (θ̃))

∣∣∣ (S.5.13)

≤
(

sup
θ∈Θ
||∇θg(gqt (θ))||

)
· ||θ − θ̃||, (S.5.14)

where supθ∈Θ ||∇θg(gqt (θ))|| = OP (1) as E [supθ∈Θ ||ψt(θ)||2r] < ∞. Equivalently, for the
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second term in (S.5.7), it holds that

φ′(get (θ))

α

(
gqt (θ)− Yt+h

)
1{Yt+h≤gqt (θ)} =

φ′(get (θ))

2α

((
gqt (θ)− Yt+h

)
−
∣∣gqt (θ)− Yt+h∣∣) .

(S.5.15)

Consequently,

∣∣Bt(θ)1t+h(θ)−Bt(θ̃)1t+h(θ̃)
∣∣ (S.5.16)

=

∣∣∣∣φ′(get (θ))2α

((
gqt (θ)− Yt+h

)
−
∣∣gqt (θ)− Yt+h∣∣) (S.5.17)

− φ′(get (θ̃))

2α

((
gqt (θ̃)− Yt+h

)
−
∣∣gqt (θ̃)− Yt+h∣∣)

∣∣∣∣∣ (S.5.18)

≤

∣∣∣∣∣φ′(get (θ))2α

(
gqt (θ)− Yt+h

)
− φ′(get (θ̃))

2α

(
gqt (θ̃)− Yt+h

)∣∣∣∣∣ (S.5.19)

+

∣∣∣∣∣φ′(get (θ))2α

∣∣gqt (θ)− Yt+h∣∣− φ′(get (θ̃))

2α

∣∣gqt (θ̃)− Yt+h∣∣
∣∣∣∣∣ (S.5.20)

≤

∣∣∣∣∣φ′(get (θ))α

(
gqt (θ)− Yt+h

)
− φ′(get (θ̃))

α

(
gqt (θ̃)− Yt+h

)∣∣∣∣∣ (S.5.21)

≤
(

sup
θ∈Θ

∣∣∣∣∣∣∣∣∇θ

(
φ′(get (θ))

α
gqt (θ)

)
+
∇θ(φ

′(get (θ)))

α
Yt+h

∣∣∣∣∣∣∣∣) · ||θ − θ̃||. (S.5.22)

and supθ∈Θ

∣∣∣∣∣∣∇θ

(
φ′(get (θ))

α
gqt (θ)

)
+
∇θ(φ′(get (θ)))

α
Yt+h

∣∣∣∣∣∣ = OP (1) as E [supθ∈Θ ||ψt(θ)||2r] <∞.

Eventually, as T−1lT (θ) = T−1
∑

t∈T ρt(θ), the Lipschitz condition in (S.5.2) holds with

KT = OP (1), which concludes this proof.

Lemma 2. (Type IV Class for Stochastic Equicontinuity of the Empirical Process) The

class of functions given by ρt(θ) := ρ
(
Yt+h, g

q
t (θ), g

e
t (θ)

)
in (2.6) is a type IV class (see

Andrews (1994), p. 2278) with index p = 2r (in the notation of Andrews (1994) and

where r > 1 from condition (B)), i.e. it holds that

sup
1≤t≤T, T≥1

E

[
sup

θ̃∈U(θ,δ)

∣∣∣ρt(θ)− ρt(θ̃)∣∣∣2r]1/2r

≤ Cδ, (S.5.23)

for all θ ∈ Θ, for all δ > 0 in a neighborhood of zero, and for some positive constant C.
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Proof. For this proof, we split the loss function

lt(θ) =
(
1{Yt+h≤gqt (θ)} − α

)
g(gqt (θ))− 1{Yt+h≤gqt (θ)}g(Yt+h)

+ φ′(get (θ))

(
get (θ)− g

q
t (θ) +

(gqt (θ)− Yt+h)1{Yt+h≤gqt (θ)}

α

)
− φ(get (θ)) + a(Yt+h)

=: At(θ)1t+h(θ) +Bt(θ)1t+h(θ)Yt+h +Dt(θ)− 1t+h(θ)g(Yt+h) + a(Yt+h),

(S.5.24)

where 1t+h(θ) := 1{Yt+h≤gqt (θ)} and

At(θ) := g(gqt (θ)) + φ′(get (θ))g
q
t (θ)/α, (S.5.25)

Bt(θ) := −φ′(get (θ))/α, and (S.5.26)

Ct(θ) := −αg(gqt (θ)) + φ′(get (θ))
(
get (θ)− g

q
t (θ)

)
− φ(get (θ)). (S.5.27)

Thus, for all θ ∈ Θ, it holds that

E

[
sup

θ̃∈U(θ,δ)

∣∣∣lt(θ)− lt(θ̃)∣∣∣2r]1/2r

≤ E

[
sup

θ̃∈U(θ,δ)

∣∣∣At(θ)1t+h(θ)− At(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

+ E

[
sup

θ̃∈U(θ,δ)

∣∣∣Bt(θ)1t+h(θ)−Bt(θ̃)1t+h(θ̃)
∣∣∣2r Y 2r

t+h

]1/2r

+ E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ct(θ)− Ct(θ̃)∣∣∣2r]1/2r

+ E

[
sup

θ̃∈U(θ,δ)

∣∣∣1t+h(θ)− 1t+h(θ̃)
∣∣∣2r |g(Yt+h)|2r

]1/2r

,

(S.5.28)

by Minkowski’s inequality (and as the sup-operator follows the triangle inequality). We

start by considering the first term in (S.5.28)

E

[
sup

θ̃∈U(θ,δ)

∣∣∣At(θ)1t+h(θ)− At(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

(S.5.29)

≤E

[
sup

θ̃∈U(θ,δ)

∣∣∣At(θ)1t+h(θ)− At(θ̃)1t+h(θ)∣∣∣2r]1/2r

+ E

[
sup

θ̃∈U(θ,δ)

∣∣∣At(θ̃)1t+h(θ)− At(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

,

(S.5.30)

where the first term is bounded from above by E

[
sup

θ̃∈U(θ,δ)

||∇θAt(θ)||2r
]1/2r

δ. For the
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second term, we get that

E

[
sup

θ̃∈U(θ,δ)

∣∣∣At(θ̃)1t+h(θ)− At(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

(S.5.31)

≤E

[
sup

θ̃∈U(θ,δ)

∣∣∣At(θ̃)∣∣∣2r Et [ sup
θ̃∈U(θ,δ)

∣∣∣1t+h(θ)− 1t+h(θ̃)
∣∣∣2r]]1/2r

(S.5.32)

≤E

[
sup

θ̃∈U(θ,δ)

∣∣∣At(θ̃)∣∣∣2r Et [ sup
θ̃∈U(θ,δ)

∣∣∣∣∣∣∇θg
q
t (θ̃)ht(g

q
t (θ̃))

∣∣∣∣∣∣2r]]1/2r

δ. (S.5.33)

by arguments as in the proof of Lemma B.1 of Dimitriadis and Bayer (2019). Similar

reasons apply to the second term in in (S.5.28), where by argument similar to equation

(58) of Dimitriadis and Bayer (2019),

Et

[
sup

θ̃∈U(θ,δ)

∣∣∣1t+h(θ)Yt+h − 1t+h(θ̃)Yt+h

∣∣∣2r] ≤ sup
θ̃∈U(θ,δ)

∣∣∣∇θg
q
t (θ̃)

(
gqt (θ̃)

)2r
ht(g

q
t (θ̃))

∣∣∣ δ.
(S.5.34)

Consequently, the second term is bounded by

E

[
sup

θ̃∈U(θ,δ)

∣∣∣Bt(θ)1t+h(θ)Yt+h −Bt(θ̃)1t+h(θ̃)Yt+h

∣∣∣2r]1/2r

(S.5.35)

≤E

[
sup

θ̃∈U(θ,δ)

∣∣∣∇θBt(θ̃)Yt+h

∣∣∣2r + sup
θ̃∈U(θ,δ)

∣∣∣Bt(θ̃)∇θg
q
t (θ̃)g

q
t (θ̃)

2rht(g
q
t (θ̃))

∣∣∣2r]1/2r

d. (S.5.36)

Equivalent argument apply to the fourth term in (S.5.28), which is bounded by

E

[
sup

θ̃∈U(θ,δ)

∣∣∣Bt(θ̃)∇θg
q
t (θ̃)g(gqt (θ̃))ht(g

q
t (θ̃))

∣∣∣2r]1/2r

d. (S.5.37)

Eventually, for the third term in (S.5.28) is bounded from above by

E

[
sup

θ̃∈U(θ,δ)

||∇θCt(θ)||2r
]1/2r

δ. (S.5.38)

As the respective moments are finite by condition (C) for all 1 ≤ t ≤ T and all T ≥ 1, it

follows that

sup
1≤t≤T, T≥1

E

[
sup

θ̃∈U(θ,δ)

∣∣∣lt(θ)− lt(θ̃)∣∣∣2r]1/2r

≤ Cδ, (S.5.39)
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which concludes this proof.

Lemma 3 (Consistency of the HAC Estimator). Given Assumption 1 and Assump-

tion 2, it holds that ÎT
P−→ I.

Proof. For this proof, we adapt the proof of Newey and West (1987) such that it allows for

the discontinuity in ψt(θ). For this, we use a slightly different expansion than in equation

(9) of Newey and West (1987) and we have to rely on a uniform law of large numbers in

order to establish the desired convergence.

We start by showing the following uniform convergence for all j ≤ T ,

sup
θ∈Θ

∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ)ψ
>
t−j(θ)− E

[
ψt(θ)ψ

>
t−j(θ)

]∣∣∣∣∣∣ P−→ 0. (S.5.40)

For this, a pointwise law of large numbers (e.g., Corollary 3.48 of White (2001)) holds as

E
[
||ψt(θ)||2(r̃+δ)

]
< ∞ for some δ > 0 and the process follows the mixing condition from

Assumption 2. Furthermore, Lemma 4 shows that the function 1
T

∑
t∈Tj ψt(θ)ψ

>
t−j(θ) is

stochastically equicontinuous. Consequently, a uniform law of large numbers holds, see

e.g. Andrews (1992) for details.

Consequently, by defining Ψ2
j(θ) := E

[
ψt(θ)ψ

>
t−j(θ)

]
, we get that∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ̂T )ψ>t−j(θ̂T )− E
[
ψt(θ

0)ψ>t−j(θ
0)
]∣∣∣∣∣∣ (S.5.41)

≤

∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ̂T )ψ>t−j(θ̂T )−Ψ2
j(θ̂T )

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

T

∑
t∈Tj

Ψ2
j(θ̂T )−Ψ2

j(θ
0)

∣∣∣∣∣∣ (S.5.42)

≤ sup
θ∈Θ

∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ)ψ
>
t−j(θ)−Ψ2

j(θ)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

T

∑
t∈Tj

Ψ2
j(θ̂T )−Ψ2

j(θ
0)

∣∣∣∣∣∣ . (S.5.43)

The first term converges to zero by (S.5.40) and as the function Ψ2
j is continuous in

θ, the second term converges to zero by the continuous mapping theorem and as θ̂T is

consistent. This also implies that for T sufficiently large enough, it holds (with probability

approaching one) that∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ̂T )ψ>t−j(θ̂T )− E
[
ψt(θ

0)ψ>t−j(θ
0)
]∣∣∣∣∣∣ ≤ 2 sup

θ∈Θ

∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ)ψ
>
t−j(θ)−Ψ2

j(θ)

∣∣∣∣∣∣ .
(S.5.44)

Furthermore, as E
[
supθ∈Θ

∣∣∣∣ψt(θ)ψ>t−j(θ)−Ψ2
j(θ)

∣∣∣∣2(r̃+δ)
]
< ∞ by assumption and as in

S.11



equation (10) in the proof of Newey and West (1987), we get that for all j ≥ 0,

E

∑
t∈Tj

sup
θ∈Θ

∣∣∣∣ψt(θ)ψ>t−j(θ)−Ψ2
j(θ)

∣∣∣∣2 ≤ T (j + 1)D∗, (S.5.45)

for some finite constant D∗. Consequently, for all j ≥ 1,

P

mT∑
j=1

z(j,mT )

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ̂T )ψ>t−j(θ̂T )− E
[
ψt(θ

0)ψ>t−j(θ
0)
]∣∣∣∣∣∣
∣∣∣∣∣∣ > ε


≤

mT∑
j=1

P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ̂T )ψ>t−j(θ̂T )− E
[
ψt(θ

0)ψ>t−j(θ
0)
]∣∣∣∣∣∣
∣∣∣∣∣∣ > ε

CmT


≤

mT∑
j=1

P

∑
t∈Tj

sup
θ∈Θ

∣∣∣∣ψt(θ)ψ>t−j(θ)− E
[
ψt(θ)ψ

>
t−j(θ)

]∣∣∣∣ > εT

2CmT


≤

mT∑
j=1

E

∑
t∈Tj

sup
θ∈Θ

∣∣∣∣ψt(θ)ψ>t−j(θ)− E
[
ψt(θ)ψ

>
t−j(θ)

]∣∣∣∣2 4C2m2
T

T 2ε2
,

≤
mT∑
j=1

T (j + 1)D∗
4C2m2

T

ε2
=

4D∗C2

ε2

m3
T (mT + 3)

T
,

(S.5.46)

where we employ (S.5.44) in the second inequality, Markov’s inequality in the penultimate

line and (S.5.45) in the last line. The term in (S.5.46) converges to zero as m3
T (mT +

3)/T → 0 as mT = o(T 1/4). Now, similar to Newey and West (1987), we split

∣∣∣∣∣∣ÎT (θ)− I
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ̂T )ψ>t (θ̂T )− E
[
ψt(θ

0)ψ>t (θ0)
]∣∣∣∣∣∣
∣∣∣∣∣∣ (S.5.47)

+ 2

mT∑
j=1

z(j,mT )

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

T

∑
t∈Tj

ψt(θ̂T )ψ>t−j(θ̂T )− E
[
ψt(θ

0)ψ>t−j(θ
0)
]∣∣∣∣∣∣
∣∣∣∣∣∣
 (S.5.48)

+ 2

mT∑
j=1

|z(j,mT )− 1|
∣∣∣∣E[ψt(θ0)ψ>t−j(θ

0)
]∣∣∣∣ (S.5.49)

+ 2
T∑

j=mt+1

∣∣∣∣E[ψt(θ0)ψ>t−j(θ
0)
]∣∣∣∣ . (S.5.50)

The terms in the first two lines converge to zero in probability by (S.5.44) and (S.5.46).

The proofs for the terms in the last two lines equal the approach in the proof of Theorem

2 in Newey and West (1987). This concludes this proof.
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Lemma 4 (Stochastic Equicontinuity for the HAC Estimator). Given Assump-

tion 1 and Assumption 2, the function 1
T

∑
t∈Tj ψt(θ)ψ

>
t−j(θ) is stochastically equicontin-

uous, where

ψt(θ) = ∇gqt (θ)
(
g(gqt (θ)) +

φ′(get (θ))

α

)(
1{Yt+h≤gqt (θ)} − α

)
(S.5.51)

+∇get (θ)φ′′(get (θ))
(
get (θ)− g

q
t (θ) +

1

α
(gqt (θ)− Yt+h)1{Yt+h≤gqt (θ)}

)
. (S.5.52)

Proof. We start by showing that the class of functions given by 1
T

∑
t∈Tj ψt(θ)ψ

>
t−j(θ) is

a type IV class (see Andrews (1994), p. 2278) with index p = 2r (in the notation of

Andrews (1994) and where r̃ > 1 from condition (B)), i.e. it holds that

sup
t,T

E

[
sup

θ̃∈U(θ,δ)

∣∣∣∣∣∣ψt(θ)ψ>t−j(θ)− ψt(θ̃)ψ>t−j(θ̃)∣∣∣∣∣∣2r
]1/2r

≤ Cδ, (S.5.53)

for all θ ∈ Θ, for all δ > 0 in a neighborhood of zero, and for some positive constant C.

First notice that (for j = 0),

ψt(θ)ψ
>
t (θ) (S.5.54)

=
(
∇gqt (θ)∇>g

q
t (θ)

)(
g(gqt (θ)) +

φ′(get (θ))

α

)2 (
1{Yt+h≤gqt (θ)}(1− 2α) + α2

)
(S.5.55)

+
(
∇get (θ)∇>get (θ)

)
φ′′(get (θ))

2

(
get (θ)− g

q
t (θ) +

1

α
(gqt (θ)− Yt+h)1{Yt+h≤gqt (θ)}

)2

(S.5.56)

+ 2
(
∇gqt (θ)∇>get (θ)

)(
g(gqt (θ)) +

φ′(get (θ))

α

)(
1{Yt+h≤gqt (θ)} − α

)
× (S.5.57)

φ′′(get (θ))

(
get (θ)− g

q
t (θ) +

1

α
(gqt (θ)− Yt+h)1{Yt+h≤gqt (θ)}

)
(S.5.58)

=: Ãt(θ)1{Yt+h≤gqt (θ)} + B̃t(θ), (S.5.59)

where

B̃t(θ) :=
(
∇gqt (θ)∇>g

q
t (θ)

)
α2

(
g(gqt (θ)) +

φ′(get (θ))

α

)2

+
(
∇get (θ)∇>get (θ)

)
φ′′(get (θ))

2
(
get (θ)− g

q
t (θ)

)2

+ 2
(
∇gqt (θ)∇>get (θ)

)
φ′′(get (θ))

(
g(gqt (θ)) +

φ′(get (θ))

α

)
α
(
gqt (θ)− get (θ)

)
,

(S.5.60)
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and

Ãt(θ) :=
(
∇gqt (θ)∇>g

q
t (θ)

)(
g(gqt (θ)) +

φ′(get (θ))

α

)2

(1− 2α)

+
(
∇get (θ)∇>get (θ)

)
φ′′(get (θ))

2

[
1

α
(gqt (θ)− Yt+h)2 +

2

α

(
get (θ)− g

q
t (θ)

)
(gqt (θ)− Yt+h)

]
+ 2
(
∇gqt (θ)∇>get (θ)

)
φ′′(get (θ))

(
g(gqt (θ)) +

φ′(get (θ))

α

)[(
get (θ)− g

q
t (θ)

)
+

1− α
α

(gqt (θ)− Yt+h)
]
.

(S.5.61)

Further notice that both, Ãt(θ) and B̃t(θ) are continuously differentiable. In the following,

we use the short notation 1t+h(θ) = 1{Yt+h≤gqt (θ)}. For all θ ∈ Θ, it holds that

E

[
sup

θ̃∈U(θ,δ)

∣∣∣ψt(θ)ψ>t (θ)− ψt(θ̃)ψ>t (θ̃)
∣∣∣2r]1/2r

≤ E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ãt(θ)1t+h(θ)− Ãt(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

+ E

[
sup

θ̃∈U(θ,δ)

∣∣∣B̃t(θ)− B̃t(θ̃)
∣∣∣2r]1/2r

.

(S.5.62)

We start by considering the first term in (S.5.62),

E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ãt(θ)1t+h(θ)− Ãt(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

(S.5.63)

≤E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ãt(θ)1t+h(θ)− Ãt(θ̃)1t+h(θ)∣∣∣2r]1/2r

+ E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ãt(θ̃)1t+h(θ)− Ãt(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

,

(S.5.64)

where the first term is bounded from above by E

[
sup

θ̃∈U(θ,δ)

∣∣∣∣∣∣∇θÃt(θ)
∣∣∣∣∣∣2r]1/2r

δ. For the

second term, we get that

E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ãt(θ̃)1t+h(θ)− At(θ̃)1t+h(θ̃)∣∣∣2r]1/2r

(S.5.65)

≤E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ãt(θ̃)∣∣∣2r Et [ sup
θ̃∈U(θ,δ)

∣∣∣1t+h(θ)− 1t+h(θ̃)
∣∣∣2r]]1/2r

(S.5.66)

≤E

[
sup

θ̃∈U(θ,δ)

∣∣∣Ãt(θ̃)∣∣∣2r Et [ sup
θ̃∈U(θ,δ)

∣∣∣∣∣∣∇θg
q
t (θ̃)ht(g

q
t (θ̃))

∣∣∣∣∣∣2r]]1/2r

δ. (S.5.67)
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by arguments as in the proof of Lemma B.1 of Dimitriadis and Bayer (2019). Eventually,

for the second term in (S.5.62) is bounded from above by

E

[
sup

θ̃∈U(θ,δ)

∣∣∣∣∣∣∇θB̃t(θ)
∣∣∣∣∣∣2r]1/2r

δ. (S.5.68)

The proofs for j ≥ 1 are equivalent and omitted here. Consequently, the set of func-

tions by given 1
T

∑
t∈Tj ψt(θ)ψ

>
t−j(θ) are a type IV class of Andrews (1994) with index

p = 2r > 2. Consequently, by Theorem 5 of Andrews (1994), it satisfies ”Ossiander’s

L2r-entropy” condition and thus, it has a ”L2r̃-envelope” given by their supremum. Con-

sequently, we can apply Theorem 1 (and Application 1) of Doukhan et al. (1995) and

obtain that 1
T

∑
t∈Tj ψt(θ)ψ

>
t−j(θ) is stochastically equicontinuous (see the Remark on

p.410 of Doukhan et al. (1995)).
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S.6 Additional Tables and Figures

Table S.1: Empirical Sizes for the GAS processes

H(1)
0 H(2)

0 H(1)
0 H(2)

0

VaR ES Aux ES VaR ES Aux ES VaR ES Aux ES VaR ES Aux ES

Linear link function

T GAS-t VaR/ES GAS

250 31.30 20.95 23.30 15.00 30.75 21.80 27.00 17.40
500 23.45 15.25 15.75 12.25 24.30 19.35 19.55 12.35
1000 14.80 9.45 12.10 9.25 18.70 13.05 15.90 10.60
2500 12.70 7.85 8.80 5.85 11.75 9.90 12.30 7.25
5000 9.60 5.35 8.60 5.75 8.60 7.85 9.30 5.85

Convex link function

T GAS-t VaR/ES GAS

250 20.62 17.07 12.86 9.80 8.30 7.99 10.26 8.05
500 17.87 16.57 9.70 8.55 15.19 17.41 10.31 7.85
1000 11.93 10.88 6.83 6.38 15.96 16.79 8.00 6.20
2500 10.71 10.61 5.90 5.60 10.67 12.02 7.30 4.65
5000 8.69 7.94 5.47 5.82 10.86 11.37 4.85 3.15

No-crossing link function

T GAS-t VaR/ES GAS

250 13.13 11.77 9.95 7.25 6.87 5.87 8.00 7.55
500 11.44 10.34 10.55 6.95 10.34 11.05 9.55 8.85
1000 7.87 7.72 9.90 6.25 10.87 10.82 10.25 9.05
2500 7.18 6.38 10.10 6.35 8.15 8.05 11.95 8.50
5000 7.47 6.11 8.55 6.10 8.36 8.31 9.00 6.55

Notes: This table shows the empirical sizes for the encompassing tests for one-step ahead
forecasts stemming from the two additional DGPs described in Section S.1, the three link
functions, the joint VaR and ES (VaR ES) and auxiliary ES (Aux ES) test and both null
hypotheses with a nominal size of 5%. The columns denoted by “GAS-t” contain results for
the GARCH(1,1) model with normal innovations and a GAS-t model, whereas those labeled
“VaR/ES GAS” report results for the one and two factor GAS models introduced by Patton
et al. (2019).
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Table S.2: Empirical Sizes for Multi-Step Forecasts

H(1)
0 H(2)

0

h 1 2 5 10 1 2 5 10

T h-step ahead forecasts

250 8.34 10.26 9.26 5.53 6.96 6.96 7.26 4.64
500 8.31 8.71 12.56 10.63 4.70 5.42 6.07 6.43
1000 6.83 7.00 10.16 13.25 3.21 4.22 4.81 6.71
2500 4.30 4.50 6.60 10.94 3.91 3.92 4.91 7.03
5000 3.60 4.83 5.82 9.50 3.50 3.30 5.11 6.31

T h-step aggregate forecasts

250 8.44 13.65 21.30 29.91 6.96 10.14 19.80 25.76
500 8.81 12.51 20.08 30.74 4.90 8.27 16.37 22.25
1000 6.93 8.63 16.82 25.63 3.31 5.45 13.33 18.07
2500 4.20 7.04 10.53 20.08 3.81 4.02 7.37 10.63
5000 3.50 4.92 9.12 15.36 3.30 2.91 5.22 7.92

Notes: This table shows the empirical sizes for the auxiliary ES encom-
passing test for the h-step ahead and the h-step aggregate forecasts and
both null hypotheses with a nominal size of 5%. It shows the results for the
GARCH specification with normal innovations and the convex link function.

Table S.3: Parameter Estimates of the Risk Models for the Empirical Application

Volatility Models β0 β1 β2 β3 v λ p a b

GARCH-N 0.023 0.859 0.125

GJR-ST 0.018 0.879 0.001 0.218 7.364 0.869

GARCH-AL 0.020 0.871 0.129 0.545

GJR-AL 0.022 0.887 -0.021 0.267 0.560

GARCH-AL-TVP 0.020 0.870 0.130 0.980

GJR-AL-TVP 0.022 0.889 -0.020 0.262 0.979

GAS-1F 0.930 -0.003 0.034 -1.449 -1.848

CAViaR-ES Models β0 β1 β2 β3 κ0 κ1 κ2

SAV -0.099 0.841 -0.337 -1.233

AS -0.072 0.889 -0.004 -0.436 0.006 0.890 0.113

Notes: The entries in this table show parameter estimates from the risk models described in
Section 3.2 and Appendix S.3 for the full sample.
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Table S.6: Correlations of VaR and ES Multi-Step Forecasts

Risk GARCH GJR GARCH GJR GARCH GJR
Metrics -N -ST -AL -AL -AL-TVP -AL-TVP

Correlations of 10-step Ahead VaR forecasts

RiskMetrics 1.000 0.943 0.907 0.953 0.897 0.989 0.868
GARCH-N 1.000 0.973 0.994 0.965 0.960 0.933
GJR-ST 1.000 0.972 0.991 0.940 0.983
GARCH-AL 1.000 0.964 0.969 0.937
GJR-AL 1.000 0.928 0.977
GARCH-AL-TVP 1.000 0.912
GJR-AL-TVP 1.000

Correlations of 10-step Ahead ES forecasts

RiskMetrics 1.000 0.943 0.898 0.952 0.897 0.989 0.869
GARCH-N 1.000 0.964 0.993 0.964 0.960 0.934
GJR-ST 1.000 0.966 0.987 0.934 0.987
GARCH-AL 1.000 0.965 0.968 0.939
GJR-AL 1.000 0.928 0.977
GARCH-AL-TVP 1.000 0.912
GJR-AL-TVP 1.000

Correlations of 10-step Aggregate VaR forecasts

RiskMetrics 1.000 0.951 0.910 0.954 0.902 0.982 0.863
GARCH-N 1.000 0.976 0.994 0.968 0.965 0.938
GJR-ST 1.000 0.967 0.987 0.945 0.982
GARCH-AL 1.000 0.969 0.962 0.924
GJR-AL 1.000 0.934 0.966
GARCH-AL-TVP 1.000 0.921
GJR-AL-TVP 1.000

Correlations of 10-step Aggregate ES forecasts

RiskMetrics 1.000 0.951 0.908 0.955 0.903 0.984 0.866
GARCH-N 1.000 0.975 0.995 0.968 0.966 0.941
GJR-ST 1.000 0.967 0.987 0.943 0.985
GARCH-AL 1.000 0.968 0.965 0.929
GJR-AL 1.000 0.935 0.971
GARCH-AL-TVP 1.000 0.920
GJR-AL-TVP 1.000

Notes: This table reports the pairwise correlations of the seven GARCH-type risk models
for the VaR and ES 10-step ahead forecasts in the upper two panels and for the VaR and
ES 10-step aggregate forecasts in the lower two panels.
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Table S.9: Backtesting Results for One-Step Ahead Forecasts

Models Violation ESR UC CC DQ VQR MF BD NZ
Ratio

Historical Sim 1.47 1.08 <0.001 <0.001 <0.001 <0.001 0.03 <0.001 <0.001

RiskMetrics 1.68 1.18 <0.001 <0.001 0.12 <0.001 <0.001 <0.001 <0.001

GARCH-N 1.57 1.12 <0.001 <0.001 0.39 <0.001 <0.001 <0.001 <0.001

GJR-ST 1.20 0.98 0.09 0.17 0.96 0.36 0.55 0.23 0.14

GARCH-AL 0.84 0.99 0.15 0.16 0.88 0.19 0.71 0.15 0.09

GJR-AL 0.69 0.98 <0.001 0.01 0.89 <0.001 0.62 0.01 <0.001

GARCH-AL-TVP 1.07 0.98 0.56 0.19 0.53 0.84 0.54 0.55 0.52

GJR-AL-TVP 1.01 0.97 0.91 0.40 0.96 0.04 0.43 0.06 0.02

GAS-1F 1.20 1.03 0.09 0.23 0.68 0.31 0.40 0.18 0.13

SAV-CAViaR-ES 1.11 1.02 0.36 0.18 0.80 0.66 0.54 0.45 0.55

AS-CAViaR-ES 1.15 1.02 0.21 0.29 0.87 0.25 0.50 0.26 0.30

Notes: The Violation Ratio is given by α̂/α, where α̂ = T−1
∑
t∈T 1{Yt+1<q̂t} and the empirical ES ratio is

computed as ESR =
∑
t∈T [Yt+1 1{Yt+1<q̂t}

]
/
∑
t∈T

[
êt1{Yt+1<q̂t}

]
. Both ratios are expected to equal one

for correctly specified VaR and ES forecasts. The remaining columns report backtesting p-values for the
unconditional coverage (UC) test of Kupiec (1995), the conditional coverage (CC) test of Christoffersen
(1998), the dynamic quantile (DQ) test of Engle and Manganelli (2004), the VQR test of Gaglianone
et al. (2011), the ES backtest of McNeil and Frey (2000) (MF), the regression-based ES backtest of Bayer
and Dimitriadis (2020) (BD), and for the calibration test of Nolde and Ziegel (2017) (NZ). Rows with
p-values in bold indicate that for a respective model, the null hypotheses of all seven backtests cannot
be rejected at the 5% significance level.
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(2) Link Function linear convex no crossing

Figure S.1: This figure shows raw power curves (empirical rejection frequencies) for the joint
VaR and ES and the auxiliary ES encompassing tests with a nominal size of 5%. The employed
link functions are indicated with the line color and symbol shape while the line type refers to
the tested null hypothesis. The plot rows depict different sample sizes while the plot columns
show results for the two innovation distributions described in (3.1) - (3.3) and for the joint and

the auxiliary tests. An ideal test exhibits a rejection rate of 5% for π = 0 and for H(1)
0 (and

inversely for π = 1 and H(2)
0 ) and as sharply increasing rejection rates as possible for increasing

(decreasing) values of π.
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Figure S.2: This figure shows raw power curves (empirical rejection frequencies) for the joint
VaR and ES encompassing test with a nominal size of 5%, for h-step ahead and h-step aggregated
forecasts indicated with different colors, and for the two tested null hypotheses indicated with
different line types. The plot rows depict different sample sizes, while the plot columns refer to
different forecast horizons h. An ideal test exhibits a rejection frequency of 5% for π = 0 and

for H(1)
0 (and inversely for π = 1 and H(2)

0 ) and as sharply increasing rejection rates as possible
for increasing (decreasing) values of π. Note that we use a Bernoulli draw based combination
method in this section as opposed to the variance combination in Section 3.2 and hence, the
results of the one-step ahead forecasts are not necessarily identical.
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Figure S.3: This figure shows size-adjusted power curves for the joint VaR and ES encompassing
test and the auxiliary ES test with a nominal size of 5% and for one-step ahead forecasts of
the two GAS-based DGPs described in Section S.1. The plot rows depict different sample sizes,
while the colors indicate the three different link functions and the line types refer to the two
tested null hypotheses. The plot columns show results for the models described in (S.1.2), (S.1.3)
and (S.1.1) and for the joint and auxiliary tests. An ideal test exhibits a rejection frequency of

5% for π = 0 and for H(1)
0 (and inversely for π = 1 and H(2)

0 ) and as sharply increasing rejection
rates as possible for increasing (decreasing) values of π.
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Figure S.4: This figure shows raw power curves (empirical rejection frequencies) for the joint
VaR and ES encompassing test and the auxiliary ES test with a nominal size of 5% and for
one-step ahead forecasts of the two GAS-based DGPs described in Section S.1. The plot rows
depict different sample sizes, while the colors indicate the three different link functions and the
line types refer to the two tested null hypotheses. The plot columns show results for the models
described in (S.1.2), (S.1.3) and (S.1.1) and for the joint and auxiliary tests. An ideal test

exhibits a rejection frequency of 5% for π = 0 and for H(1)
0 (and inversely for π = 1 and H(2)

0 )
and as sharply increasing rejection rates as possible for increasing (decreasing) values of π.
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Figure S.5: This figure shows size-adjusted power curves for the auxiliary ES encompassing test
with a nominal size of 5% for h-step ahead and h-step aggregate forecasts stemming from the
GARCH process specifications in (3.1) - (3.3). The h-step ahead and aggregate forecasts are
indicated by different colors and the two tested null hypotheses are indicated with different line
types. The plot rows depict different sample sizes, while the plot columns refer to different
forecast horizons h = 1, 2, 5, 10. An ideal test exhibits a rejection frequency of 5% for π = 0 and

for H(1)
0 (and inversely for π = 1 and H(2)

0 ) and as sharply increasing rejection rates as possible
for increasing (decreasing) values of π.
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Figure S.6: This figure shows raw power curves (empirical rejection frequencies) for the auxiliary
ES encompassing test with a nominal size of 5% for h-step ahead and h-step aggregate forecasts
stemming from the GARCH process specifications in (3.1) - (3.3). The h-step ahead and aggre-
gate forecasts are indicated by different colors and the two tested null hypotheses are indicated
with different line types. The plot rows depict different sample sizes, while the plot columns
refer to different forecast horizons h = 1, 2, 5, 10. An ideal test exhibits a rejection frequency of

5% for π = 0 and for H(1)
0 (and inversely for π = 1 and H(2)

0 ) and as sharply increasing rejection
rates as possible for increasing (decreasing) values of π.
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Figure S.7: This figure shows raw power curves (empirical rejection frequencies) for the joint
VaR and ES encompassing test with a nominal size of 5% for h-step ahead forecasts stemming
from the GARCH process specifications in (3.1) - (3.3). The plot rows depict different sample
sizes, the plot columns show the different forecast horizons h, the colors indicate the different
covariance estimators, and the line types refer to the two tested null hypotheses. An ideal test

exhibits a rejection frequency of 5% for π = 0 and for H(1)
0 (and inversely for π = 1 and H(2)

0 )
and as sharply increasing rejection rates as possible for increasing (decreasing) values of π.
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Figure S.8: This figure shows raw power curves (empirical rejection frequencies) for the joint VaR
and ES encompassing test with a nominal size of 5% for h-step aggregate forecasts stemming
from the GARCH process specifications in (3.1) - (3.3). The plot rows depict different sample
sizes, the plot columns show the different forecast horizons h, the colors indicate the different
covariance estimators, and the line types refer to the two tested null hypotheses. An ideal test

exhibits a rejection frequency of 5% for π = 0 and for H(1)
0 (and inversely for π = 1 and H(2)

0 )
and as sharply increasing rejection rates as possible for increasing (decreasing) values of π.
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